Utilization of oil palm fronds as a sustainable
carbon source in biorefineries
Oil palm fronds (OPF) is the largest biomass which makes up to 70% of the total residues
generated from palm oil industry. Global production of oil palm fronds is estimated to be
250 million metric tonnes, MMT (wet weight) which can accommodate a sustainable production
of 34.6 MMT of structural carbohydrates and 2 MMT of readily fermentable sugars
per annum. The present study focused on the characterization of OPF composition by
National Renewable Energy Laboratories (NREL) method. The results showed that OPF
contained 57.6, 19.7 and 5.8% of total structural carbohydrate, total lignin and ash content.
The total structural carbohydrate mainly consisted of 42.8, 12.5 and 2.3% of glucan, xylan
and arabinan, respectively. HPLC analysis showed that OPF juice had 40 g/L of fermentable
sugars consisting of glucose, sucrose, arabinose and fructose in the ratios of 62:31:4:4 with
0.2% total suspended solid. A total of 25% (w/w) of juice could be extracted from raw OPF
using sugarcane juice extractor machine. Unlike OPF bagasse, the sugars in OPF juice were
readily fermentable and could eliminate the costly pre-treatment. Fermentability test of
OPF juice for succinic acid production using Actinobacillus succinogenes 130Z gave a final
concentration up to 21 g/L after 60 h of anaerobic fermentation. This study also investigated
the effect of CO2 availability, in the form of magnesium carbonate loading which was
proven to have a direct effect on succinate production. A carbonate loading of 400 mmol/L
in this study could produce lesser byproducts and four times higher succinic acid than the
control (from 5 g/L without carbonate loading to 21 g/L). This is the first report focusing on
the utilization of frond juice of Oil palm, the largest biomass from palm oil industry to act
as an alternative, sustainable feedstock for the production of bio-succinic acid.
Copyright © 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights