(rather than gross) national product and investment, sY is the rate of growth of
the capital stock. Let y = Y/L denote output per worker and let k = K/L
denote capital per worker. Let n denote the rate of growth of the labor force.
Finally, let a "^ " over a variable denote its exponential rate of growth. Then the
behavior of the economy can be summarized by the following equation:
The first line in this equation follows by dividing total output by the stock
of labor and then calculating rates of growth. This expression specifies the
procedure from growth accounting for calculating the technology residual.
Calculate the growth in output per worker, then subtract the rate of growth of
the capital-labor ratio times the share of capital income in total income from the
rate of growth of output per worker. The second line follows by substituting in
an expression for the rate of growth of the stock of capital per worker, as a
function of the savings rate s, the growth rate of the labor force n, the level of
the technology A(t), and the level of output per worker, 4'.
Outside of the steady state, the second line of the equation shows how
variation in the investment rate and in the level of output per worker should
translate into variation in the rate of growth. The key parameter is the
exponent p on labor in the Cobb-Douglas expression for output. Under the
neoclassical assumption that the economy is characterized by perfect competition,
p is equal to the share of total income that is paid as compensation labor, a number that can be calculated directly from the national income
accounts. In the sample as a whole, a reasonable benchmark for @ is 0.6. (In
industrialized economies, it tends to be somewhat larger.) This means that in
the second line of the equation, the exponent (-@)/(I - @) on the level of
output per worker y should be on the order of about - 1.5.
We can now perform the followirlg calculation. Pick a country like the
Philippines that had output per worker in 1960 that was equal to about 10
percent of output per worker in the United States. Because 0. is equal to
about 30, the equation suggests that the United States would have required a
savings rate that is about 30 times larger than the savings rate in the Philippines
for these two countries to have grown at the same rate. If we use 2/3
instead of .6 as the estimate of @, the required savings rate in the United States
would be 100 times larger than the savings rate in the Philippines. The
evidence shows that these predicted saving rates for the United States are
orders of magnitude too large.
A key assumption in this calculation is that the level of the technology A(t)
is the same in the Philippines and the United States. (The possibility that A(t)
might differ is considered below.) If they have the same technology, the only
way to explain why workers in the Philippines were only 10 percent as
productive as workers in the United States is to assume that they work with
about 0.1'/('-~) or between 0.3 percent and 0.1 percent as much capital per
worker. Because the marginal product of capital depends on the capital stock
raised to the power -@, the marginal product of an additional unit of capital is
O.l-P/"-P' times larger in the Philippines than it is in the United States, so a
correspondingly higher rate of investment is needed in the United States to get
the same effect on output.
Figure 2 plots the level of per capita income against the ratio of gross
investment to gross domestic product for the Heston-Summers sample of
countries. The correlation in this figure at least has the correct sign to explain
why poor countries on average are not growing faster than the rich
countries-that is, a higher level of income is associated with a higher investment
rate. But if @ is between 0.6 and 0.7, the variation in investment between
rich and poor countries is at least an order of magnitude too small to explain
why the rich and poor countries seem to grow at about the same rate. In
concrete terms, the share of investment in the United States is not 30 or 100
times the share in the Philippines. At most, it is twice as large.
Of course, the data in Figures 1 and 2 are not exactly what the theory calls
for, but the differences are not likely to help resolve the problem here. For
example, the display equation depends on the net investment rate instead of
the gross investment rate. Because we do not have reliable data on depreciation
for this sample of countries, it is not possible to construct a net investment ratio.
A reasonable conjecture, however, is that depreciation accounts for a larger
share of GDP in rich countries than it does in poor countries, so the difference
between the net investment rate in rich and poor countries will be even smaller than the difference between the gross investment rates illustrated in the figure.
The display equation also calls for output per worker rather than output per
capita, but for a back-of-the-envelope calculation, variation in income per capita
should be close enough to variation in output per worker to show that a simple
version of the neoclassical model will have trouble fitting the facts.
( แทนที่จะรวม ) ผลิตภัณฑ์แห่งชาติและการลงทุน , SY เป็นอัตราการเติบโตของ
ทุนเรือนหุ้น ให้ y = y / L แสดงผลผลิตต่อแรงงาน ให้ K = k / l
แสดงทุนต่อแรงงาน . ให้ n แสดงถึงอัตราการเติบโตของแรงงาน .
ในที่สุด ปล่อยให้ "
" ตัวแปรของเลขชี้กำลังแสดงอัตราการเจริญเติบโตของ . แล้วพฤติกรรมของเศรษฐกิจสามารถสรุปได้โดยสมการต่อไปนี้ :
บรรทัดแรกในสมการนี้ คือ โดยแบ่งผลผลิตทั้งหมด โดยหุ้น
แรงงานแล้วคำนวณอัตราการเจริญเติบโต สำนวนนี้ใช้ขั้นตอนการบัญชีสำหรับการคำนวณจาก
หาเทคโนโลยีที่เหลือ การเจริญเติบโต ผลผลิตต่อแรงงาน ลบอัตราการเติบโตของ
สัดส่วนแรงงานทุนครั้งแบ่งปันรายได้หรือรายได้ทั้งหมดจาก
อัตราการเจริญเติบโตของผลผลิตต่อหัวคนงาน บรรทัดที่สองคือจากใน
การแสดงออกสำหรับอัตราการเจริญเติบโตของหุ้นทุนต่อแรงงานเป็น
ฟังก์ชันของอัตราการออมของอัตราการเจริญเติบโตของแรงงาน , ระดับของเทคโนโลยี
( T ) , และระดับของผลผลิตต่อแรงงาน 4 '
นอกสภาวะบรรทัดที่สองของสมการแสดงให้เห็นว่า
การเปลี่ยนแปลงในอัตราการลงทุนและในระดับของผลผลิตต่อแรงงาน ควร
แปลลงในการเปลี่ยนแปลงในอัตราการเจริญเติบโต พารามิเตอร์ที่สำคัญคือผู้สนับสนุน
P แรงงานในคอบบ์ดักลาส การแสดงออกต่อผลผลิต ภายใต้สมมติฐานที่เศรษฐกิจ
ต่างๆมีลักษณะการแข่งขันที่สมบูรณ์แบบ ,
p เท่ากับส่วนแบ่งรายได้ ที่จ่ายเป็นค่าแรง ค่าตอบแทนตัวเลขที่คำนวณได้โดยตรงจาก
รายได้ประชาชาติบัญชี ในตัวอย่างเป็นทั้งมาตรฐานที่เหมาะสมสำหรับ @ 0.6 (
เศรษฐกิจ , อุตสาหกรรมมีแนวโน้มที่จะค่อนข้างใหญ่ ) ซึ่งหมายความว่า
บรรทัดที่สองของสมการเลขชี้กำลัง ( - @ ) / ( I - @ ) ในระดับของผลผลิตต่อแรงงาน
Y ควรจะอยู่ในลำดับของเรื่อง
- 1.5ตอนนี้เราสามารถดำเนินการ followirlg การคำนวณ เลือกประเทศ เช่น ฟิลิปปินส์ ที่มีผลผลิตต่อแรงงาน
ในปี 1960 ที่เท่ากับ 10
เปอร์เซ็นต์ของผลผลิตต่อแรงงานในสหรัฐอเมริกา เพราะ 0 เท่ากับ
ประมาณ 30 , สมการพบว่าสหรัฐอเมริกาจะต้อง
อัตราการออมที่ประมาณ 30 ครั้งมีขนาดใหญ่กว่าอัตราการออมในฟิลิปปินส์
ทั้งสองประเทศมีการเติบโตในอัตราเดียวกัน ถ้าเราใช้ 2 / 3
แทน เช่น การประมาณการ 6 @ , บังคับใช้อัตราการออมในสหรัฐอเมริกา
จะมีขนาดใหญ่กว่าอัตราการออมในฟิลิปปินส์ 100 ครั้ง
หลักฐานแสดงให้เห็นว่าเหล่านี้คาดการณ์อัตราประหยัดสำหรับสหรัฐอเมริกา
คำสั่งของขนาดใหญ่มากเกินไปสมมติฐานที่สำคัญในการคำนวณนี้คือ ระดับของเทคโนโลยี ( T )
เป็นแบบเดียวกันในฟิลิปปินส์และสหรัฐอเมริกา ( เป็นไปได้ว่า ( t )
อาจแตกต่างกันถือว่า ด้านล่าง ) ถ้าพวกเขามีเทคโนโลยีเดียวกัน แต่วิธีที่จะอธิบายว่าทำไม
แรงงานในฟิลิปปินส์มีเพียง 10 เปอร์เซ็นต์เป็นแรงงาน
ผลิตในประเทศสหรัฐอเมริกา คือ สมมติว่า พวกเขาทำงานกับ
0 .1 / ( ' ~ ) หรือระหว่าง 0.3 เปอร์เซ็นต์และร้อยละ 0.1 เป็นทุนต่อ
คนงาน เพราะค่าผลิตภัณฑ์ของทุนขึ้นอยู่กับทุน
ยกอำนาจ - @ , เพิ่มผลิตภัณฑ์เพิ่มเติมหน่วยทุน
o.l-p / " - P ' ครั้งใหญ่ในฟิลิปปินส์กว่ามันในสหรัฐอเมริกาดังนั้น
ต้องกันอัตราการลงทุนเป็นสิ่งจำเป็นในประเทศสหรัฐอเมริกา รับ
เช่นเดียวกันกับการส่งออก
รูปที่ 2 แปลงระดับของรายได้ต่อหัวกับอัตราส่วนของการลงทุนรวม
กับผลิตภัณฑ์มวลรวมภายในประเทศสำหรับตัวอย่างเฮสตัน ซัมเมอร์ของ
ประเทศ แบบในรูปนี้ อย่างน้อย มีสัญลักษณ์ที่ถูกต้องเพื่ออธิบาย
ทำไมประเทศที่ยากจนโดยเฉลี่ยจะไม่เติบโตเร็วกว่ารวย
ประเทศนั่นคือระดับที่สูงขึ้นของรายได้ที่เกี่ยวข้องกับอัตราการลงทุน
สูงกว่า แต่ถ้า @ ระหว่าง 0.6 และ 0.7 , การเปลี่ยนแปลงในการลงทุนระหว่างคนรวยและคนจน
ประเทศเป็นอย่างน้อยคำสั่งของขนาดเล็กเกินไปที่จะอธิบาย
ทำไมประเทศรวยและยากจนดูเหมือนจะเติบโตในอัตราเดียวกัน ใน
แง่คอนกรีต , หุ้นของการลงทุนในสหรัฐอเมริกาไม่ได้เป็น 30 หรือ 100
ครั้งแบ่งปันในฟิลิปปินส์ มากที่สุด มันเป็นสองเท่าเป็นขนาดใหญ่ .
แน่นอน ข้อมูลตัวเลข 1 และ 2 ไม่ได้เป็นสิ่งที่ทฤษฎีโทร
สำหรับ แต่ความแตกต่างที่ไม่อาจช่วยแก้ไขปัญหานี้ สำหรับ
ตัวอย่าง แสดงสมการขึ้นอยู่กับการลงทุนสุทธิอัตราแทน
อัตราการลงทุนรวม เพราะเราไม่ได้มีข้อมูลที่เชื่อถือได้เกี่ยวกับค่าเสื่อมราคา
สำหรับตัวอย่างของประเทศ มันไม่ได้เป็นไปได้ที่จะสร้างอัตราส่วนการลงทุนสุทธิ .
การคาดเดาที่เหมาะสม อย่างไรก็ตาม คือ ค่าเสื่อมราคาบัญชีสำหรับหุ้นขนาดใหญ่ของ GDP ในประเทศที่ร่ำรวยกว่า
มันในประเทศยากจน ดังนั้นความแตกต่าง
ระหว่างอัตราการลงทุนสุทธิในประเทศร่ำรวยและยากจน จะต้องมีขนาดเล็กกว่า ความแตกต่างระหว่างอัตราการลงทุนรวมแสดงในรูปสมการ
แสดงยังเรียกร้องให้ผลผลิตต่อแรงงาน มากกว่าผลผลิตต่อ
ต่อหัว แต่เป็นด้านหลังของซองจดหมายการคำนวณความผันแปรในรายได้ต่อหัว
น่าจะใกล้พอที่จะเปลี่ยนแปลงในผลผลิตต่อแรงงาน เพื่อแสดงให้เห็นว่าเป็นรุ่นธรรมดา
ของรูปแบบต่างๆจะมีปัญหาที่เหมาะสมจริง
การแปล กรุณารอสักครู่..
