IntroductionUltrathinsolarcellsprovideaneffectivewayofreducingmate-ria การแปล - IntroductionUltrathinsolarcellsprovideaneffectivewayofreducingmate-ria ไทย วิธีการพูด

IntroductionUltrathinsolarcellsprov

Introduction

Ultrathin

solar

cells

provide

an

effective

way

of

reducing

mate-

rial

usage,

utilizing

low

quality

material

and

realizing

diverse

like

flexible

applications

[1–3].

Along

with

fabrication

techniques

for

ultrathin

crystalline

silicon

(c-Si)

wafer

that

have

advanced

to

a

level

where

desired

thickness,

roughness

and

composition

can

be

readily

synthesized

by

etching

and

other

techniques

[4–6],

ultra-

thin

c-Si

based

solar

cells

especially

the

c-Si/polymer

hybrid

ones

have

attracted

a

lot

of

attention

[7–12].

This

is

because

such

c-

Si/polymer

solar

cell

is

much

suitable

to

realize

low

temperature

and

large

area

fabrication

as

it

does

not

require

a

complex

junction

fabrication

process

and

it

usually

has

simple

structures

[13,14].

It

has

been

reported

that

the

power

conversion

efficiency

(PCE)

of

ultrathin

c-Si/PEDOT:PSS

device

has

reached

6.6%

[13].

Where

Sharma

et

al

have

made

great

efforts

in

fabricating

light-trapping

structures,

including

silicon

pillars

on

the

front-surface

and

silver

particles

on

the

back-surface,

to

enhance

light

absorption.

Indeed,

the

photocurrent

density

of

devices

having

these

structures

is

dra-

matically

enhanced.

However,

these

complex

architectures

have

also

brought

about

abundant

energy

losses

(carrier

recombination)

∗ Corresponding

author.

Tel./fax:

+86

1061772951.

E-mail

address:

mcli@ncepu.edu.cn

(M.

Li).

due

to

the

increased

interface

defects.

Such

increased

energy

losses

can

be

reflected

by

the

fact

that,

the

ratio

of

the

measured

pho-

tocurrent

density

to

the

theoretical

limit

(R-M/T)

for

device

with

light-trapping

architectures

(51%,

18.50

to

36.51

mA

cm2)

is

much

lower

than

that

of

device

without

light-trapping

architectures

(76%,

15.06

to

19.94

mA

cm2)

[13].

Additionally,

the

light-trapping

struc-

tures

also

complicate

the

fabrication

process

thus

increasing

the

cost,

and

as

a

result

it

is

difficult

to

ensure

the

process

consistency.

From

the

above

considerations,

planar

ultrathin

solar

cells

are

more

suitable

for

practical

application.

In

this

work,

we

fabricate

simple

planar

c-Si/PEDOT:PSS

solar

cell

of

about

18

m

thickness,

which

has

good

flexibility.

Focusing

on

reducing

the

carrier

recombination,

two

passivation

technolo-

gies

have

been

carried

out.

The

two

passivation

technologies

are

native

oxidizing

and

depositing

intrinsic

amorphous

silicon

(i

a-Si)

on

the

silicon

at

the

c-Si/PEDOT:PSS

interface.

The

depositing

of

i-a-Si

layer

is

the

best

method,

and

by

controlling

its

thickness

to

2

nm

the

PCE

of

device

can

reach

5.68%

with

R-M/T

about

83.0%.

2.

Experiments

2.1.

Fabrication

of

ultrathin

silicon

originally,

the

n-type

(1

0

0),

double

side-polished,

4-in.

silicon

wafers

(resistivity,

1–5

cm)

with

a

thickness

of

500

±

10

m

were

http://dx.doi.org/10.1016/j.apsusc.2016.01.129

0169-4332/©

2016

Elsevier

B.V.

All

rights

reserved.

Y.

Li

et

al.

/

Applied

Surface

Science

366

(2016)

494–498

495

ultrasonically

cleaned

in

acetone,

ethanol

and

deionized

water

for

10

min,

respectively.

Subsequently,

the

substrates

were

rinsed

with

deionized

(DI)

water

and

dried

with

a

nitrogen

gun.

After

that,

the

clean

silicon

wafers

were

immersed

in

KOH

solution

with

concen-

tration

of

50

wt.%

at

90◦C

for

certain

duration

of

time,

to

obtain

18

m

free-standing

c-Si

membranes.

2.2.

Silicon

passivation

the

ultrathin

c-Si

wafer

is

first

cleaned

by

deionized

(DI)

water.

The

samples

without

passivation

were

treated

by

immersing

the

silicon

wafer

into

HF

solution

(V:V

=

1:2)

at

room

temperature

for

2

min;

the

native

oxide

method

was

done

by

placing

the

HF-cleaned

wafer

in

a

dry

dish

with

air

condition;

and

the

amorphous

silicon

passivation

was

carried

out

by

depositing

i

a-Si

layer

on

the

HF-

cleaned

silicon

wafer

using

the

PECVD

equipment

for

20s

at

250◦C.

In

the

i

a-Si

deposition

process,

a

165

sccm

mixture

gas

flow

of

SiH4/Ar

(1/24)

was

used;

and

the

chamber

pressure

maintained

about

3

Pa.

2.3.

Fabrication

of

photovoltaic

devices

firstly,

the

ultrathin

c-Si

of

thickness

18

m

was

cut

into

small

squares

of

1

×

1

cm2.

Then,

small

silicon

squares

without

passiv-

ation

(H-terminated),

with

native

oxide

layer

or

i

a-Si

layer

were

prepared;

highly

conductive

PEDOT:PSS

solvent

was

prepared

by

mixed

the

PEDOT:PSS

(purchased

from

Bayer

AG)

with

dimethyl

sulfoxide

(DMSO,

5

wt%)

and

Zonyl

fluoro-surfactant

(0.1

wt%).

Thereafter,

these

silicon

squares

were

tran
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
IntroductionUltrathinsolarcellsprovideaneffectivewayofreducingmate-rialusage,utilizinglowqualitymaterialandrealizingdiverselikeflexibleapplications[1–3].Alongwithfabricationtechniquesforultrathincrystallinesilicon(c-Si)waferthathaveadvancedtoalevelwheredesiredthickness,roughnessandcompositioncanbereadilysynthesizedbyetchingandothertechniques[4–6],ultra-thinc-Sibasedsolarcellsespeciallythec-Si/polymerhybridoneshaveattractedalotofattention[7–12].Thisisbecausesuchc-Si/polymersolarcellismuchsuitabletorealizelowtemperatureandlargeareafabricationasitdoesnotrequireacomplexjunctionfabricationprocessanditusuallyhassimplestructures[13,14].Ithasbeenreportedthatthepowerconversionefficiency(PCE)ofultrathinc-Si/PEDOT:PSSdevicehasreached6.6%[13].WhereSharmaetalhavemadegreateffortsinfabricatinglight-trappingstructures,includingsiliconpillarsonthefront-surfaceandsilverparticlesontheback-surface,toenhancelightabsorption.Indeed,thephotocurrentdensityofdeviceshavingthesestructuresisdra-maticallyenhanced.However,thesecomplexarchitectureshavealsobroughtaboutabundantenergylosses(carrierrecombination)∗ Correspondingauthor.Tel./fax:+861061772951.E-mailaddress:mcli@ncepu.edu.cn(M.Li).duetotheincreasedinterfacedefects.Suchincreasedenergylossescanbereflectedbythefactthat,theratioofthemeasuredpho-tocurrentdensitytothetheoreticallimit(R-M/T)fordevicewithlight-trappingarchitectures(51%,18.50to36.51mAcm2)ismuchlowerthanthatofdevicewithoutlight-trappingarchitectures(76%,15.06to19.94mAcm2)[13].Additionally,thelight-trappingstruc-turesalsocomplicatethefabricationprocessthusincreasingthecost,andasaresultitisdifficulttoensuretheprocessconsistency.Fromtheaboveconsiderations,planarultrathinsolarcellsaremoresuitableforpracticalapplication.Inthiswork,wefabricatesimpleplanarc-Si/PEDOT:PSSsolarcellofabout18mthickness,whichhasgoodflexibility.Focusingonreducingthecarrierrecombination,twopassivationtechnolo-gieshavebeencarriedout.Thetwopassivationtechnologiesarenativeoxidizinganddepositingintrinsicamorphoussilicon(ia-Si)onthesiliconatthec-Si/PEDOT:PSSinterface.Thedepositingofi-a-Silayeristhebestmethod,andbycontrollingitsthicknessto2nmthePCEofdevicecanreach5.68%withR-M/Tabout83.0%.2.Experiments2.1.Fabricationofultrathinsiliconoriginally,then-type(100),doubleside-polished,4-in.siliconwafers(resistivity,1–5cm)withathicknessof500±10mwerehttp://dx.doi.org/10.1016/j.apsusc.2016.01.1290169-4332/©2016ElsevierB.V.Allrightsreserved.Y.Lietal./AppliedSurfaceScience366(2016)494–498495ultrasonicallycleanedinacetone,ethanolanddeionizedwaterfor10min,respectively.Subsequently,thesubstrateswererinsedwithdeionized(DI)wateranddriedwithanitrogengun.Afterthat,thecleansiliconwaferswereimmersedinKOHsolutionwithconcen-trationof50wt.%at90◦Cforcertaindurationoftime,toobtain18mfree-standingc-Simembranes.2.2.Siliconpassivationtheultrathinc-Siwaferisfirstcleanedbydeionized(DI)water.ThesampleswithoutpassivationweretreatedbyimmersingthesiliconwaferintoHFsolution(V:V=1:2)atroomtemperaturefor2min;thenativeoxidemethodwasdonebyplacingtheHF-cleanedwaferinadrydishwithaircondition;andtheamorphoussiliconpassivationwascarriedoutbydepositingia-SilayerontheHF-cleanedsiliconwaferusingthePECVDequipmentfor20sat250◦C.Intheia-Sidepositionprocess,a165sccmmixturegasflowofSiH4/Ar(1/24)wasused;andthechamberpressuremaintainedabout3Pa.2.3.Fabricationofphotovoltaicdevicesfirstly,theultrathinc-Siofthickness18mwascutintosmallsquaresof1×1cm2.Then,smallsiliconsquareswithoutpassiv-ation(H-terminated),withnativeoxidelayeroria-Silayerwereprepared;
highly

conductive

PEDOT:PSS

solvent

was

prepared

by

mixed

the

PEDOT:PSS

(purchased

from

Bayer

AG)

with

dimethyl

sulfoxide

(DMSO,

5

wt%)

and

Zonyl

fluoro-surfactant

(0.1

wt%).

Thereafter,

these

silicon

squares

were

tran
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Introduction Ultrathin solar cells provide an effective way of reducing mate- rial usage, utilizing low quality material and realizing diverse like flexible applications [1–3]. Along with fabrication techniques for ultrathin crystalline silicon (c-Si) wafer that have advanced to a level where desired thickness, roughness and composition can be readily synthesized by etching and other techniques [4–6], ultra- thin c-Si based solar cells especially the c-Si/polymer hybrid ones have attracted a lot of attention [7–12]. This is because such c- Si/polymer solar cell is much suitable to realize low temperature and large area fabrication as it does not require a complex junction fabrication process and it usually has simple structures [13,14]. It has been reported that the power conversion efficiency (PCE) of ultrathin c-Si/PEDOT:PSS device has reached 6.6% [13]. Where Sharma et al have made great efforts in fabricating light-trapping structures, including silicon pillars on the front-surface and silver particles on the back-surface, to enhance light absorption. Indeed, the photocurrent density of devices having these structures is dra- matically enhanced. However, these complex architectures have also brought about abundant energy losses (carrier recombination) ∗ Corresponding author. Tel./fax: +86 1061772951. E-mail address: mcli@ncepu.edu.cn (M. Li). due to the increased interface defects. Such increased energy losses can be reflected by the fact that, the ratio of the measured pho- tocurrent density to the theoretical limit (RM/T) for device with light-trapping architectures (51%, 18.50 to 36.51 mA cm2) is much lower than that of device without light-trapping architectures (76%, 15.06 to 19.94 mA cm2) [13]. Additionally, the light-trapping struc- tures also complicate the fabrication process thus increasing the cost, and as a result it is difficult to ensure the process consistency. From the above considerations, planar ultrathin solar cells are more suitable for practical application. In this work, we fabricate simple planar c-Si/PEDOT:PSS solar cell of about 18 m thickness, which has good flexibility. Focusing on reducing the carrier recombination, two passivation technolo- gies have been carried out. The two passivation technologies are native oxidizing and depositing intrinsic amorphous silicon (i a-Si) on the silicon at the c-Si/PEDOT:PSS interface. The depositing of i-a-Si layer is the best method, and by controlling its thickness to 2 nm the PCE of device can reach 5.68% with R-M/T about 83.0%. 2. Experiments 2.1. Fabrication of ultrathin silicon originally, the n-type (1 0 0), double side-polished, 4-in. silicon wafers (resistivity, 1–5 cm) with a thickness of 500 ± 10 m were http://dx.doi.org/10.1016/j.apsusc.2016.01.129 0169-4332/© 2016 Elsevier B.V. All rights reserved. Y. Li et al. / Applied Surface Science 366 (2016) 494–498 495 ultrasonically cleaned in acetone, ethanol and deionized water for 10 min, respectively. Subsequently, the substrates were rinsed with deionized (DI) water and dried with a nitrogen gun. After that, the clean silicon wafers were immersed in KOH solution with concen- tration of 50 wt.% at 90◦C for certain duration of time, to obtain 18 m free-standing c-Si membranes. 2.2. Silicon passivation the ultrathin c-Si wafer is first cleaned by deionized (DI) water. The samples without passivation were treated by immersing the silicon wafer into HF solution (V:V = 1:2) at room temperature for 2 min; the native oxide method was done by placing the HF-cleaned wafer in a dry dish with air condition; and the amorphous silicon passivation was carried out by depositing i a-Si layer on the HF- cleaned silicon wafer using the PECVD equipment for 20s at 250◦C. In the i a-Si deposition process, a 165 sccm mixture gas flow of SiH4/Ar (1/24) was used; and the chamber pressure maintained about 3 Pa. 2.3. Fabrication of photovoltaic devices firstly, the ultrathin c-Si of thickness 18 m was cut into small squares of 1 × 1 cm2. Then, small silicon squares without passiv- ation (H-terminated), with native oxide layer or i a-Si layer were prepared; highly conductive PEDOT:PSS solvent was prepared by mixed the PEDOT:PSS (purchased from Bayer AG) with dimethyl sulfoxide (DMSO, 5 wt%) and Zonyl fluoro-surfactant (0.1 wt%). Thereafter, these silicon squares were tran



































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: