For a more local interpolation, fewer markers found within the surrounding cell (e.g. half grid space from the node) can be used. This method is called the marker-in-cell (MIC) technique. Obviously, the results of pure advection (e.g. of density, Fig. 8.6(c)) with MIC are not subjected to numerical diffusion (with the exception of non-accumulating interpolation errors between Lagrangian markers and Eulerian nodes) since markers always retain their
original density values and only change positions with time.