Here, ~z ¼ z=R0 and r~ ¼ ~z=R0 are the reduced jet length andjet radiu การแปล - Here, ~z ¼ z=R0 and r~ ¼ ~z=R0 are the reduced jet length andjet radiu ไทย วิธีการพูด

Here, ~z ¼ z=R0 and r~ ¼ ~z=R0 are

Here, ~z ¼ z=R0 and r~ ¼ ~z=R0 are the reduced jet length and
jet radius, respectively, and the key dimensionless group parameters
in the problem are the Froude number ðFrÞ, the
Weber number ðWeÞ and the Reynolds number ðReÞ, given
by
Fr ¼ t2
0
2R0g
; We ¼ 2R0qt2
0
c ; Re ¼ 2R0qt0
g : (2)
These quantities represent, respectively, the relative effects
of gravity ðgÞ, surface tension ðcÞ, and viscosity ðgÞ in comparison
to inertia, with each defined to be large when inertial
effects are comparatively large.
Neglecting the surface tension effect, Clarke9 derived an
analytical JSF for viscous fluids in terms of the Airy function.
However, his JSF is valid only for high Re because at
low Re the effect of the surface tension becomes more significant
than the viscosity10 and cannot be ignored.11 Adachi12
analyzed the effects of the fluid viscosity and surface tension
in the asymptotic regions of high and low Reynolds number.
No analytical equation for the JSF over a wide range of all
three dimensionless group numbers is known. For inviscidfluids (the limit of large Re but still laminar flow), an analytical
form of JSF proposed by many authors can be summarized
as13
~z ¼ Fr
1
r~4 m
n
Bo
1
r~ 1
; (3)
where the first term is due to gravity while the second is the
surface tension term due to the curvature of the liquid-air jet
surface. Here Bo ¼ We=Fr ¼ 4R2
0qg=c is the Bond number,
characterizing the relative effect of gravity with respect to
surface tension, while m and n are parameters of the model.
According to Kurabayashi,5 n ¼ 8, whereas the slenderness
approximation used by Anno6 yelds n ¼ 4. For n ¼ 0 and
large Bond numbers, Eq. (3) reduces to the well-known
Weisbach equation14
~z ¼ Fr
1
r~4 1
: (4)
The effects of surface tension and viscosity on the form of
the stationary jet are active research topics15–17 and not yet
fully understood. In this paper, we develop an analytical
approach based on energy considerations to derive the governing
differential equation for the jet radius as a function of
axial position. We formulate a modified Bernoulli equation18
for a free-falling jet that includes the jet interfacial energy
density and losses due to the fluid viscosity. An analytical
equation for the JSF derived in terms of the dimensionless
group numbers is compared with experimental observations,
and good agreement is obtained.
II. FORMULATION OF THE PROBLEM
Consider isothermal, laminar flow of an incompressible
Newtonian fluid with viscosity g, surface tension c, and density
q, issuing downward from a circular orifice of radius R0
into the air with initial velocity t0 and falling in a gravitational
field g^z (z being measured vertically downward) in the form
of an axisymmetric jet narrowing downward (see Fig. 1).
For this jet flow, a modifed Bernoulli-type equation18 along
the streamline, including energy losses due to fluid viscosity19
and free surface energy of the jet, can be written in the form
733 Am.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Here, ~z ¼ z=R0 and r~ ¼ ~z=R0 are the reduced jet length andjet radius, respectively, and the key dimensionless group parametersin the problem are the Froude number ðFrÞ, theWeber number ðWeÞ and the Reynolds number ðReÞ, givenbyFr ¼ t202R0g; We ¼ 2R0qt20c ; Re ¼ 2R0qt0g : (2)These quantities represent, respectively, the relative effectsof gravity ðgÞ, surface tension ðcÞ, and viscosity ðgÞ in comparisonto inertia, with each defined to be large when inertialeffects are comparatively large.Neglecting the surface tension effect, Clarke9 derived ananalytical JSF for viscous fluids in terms of the Airy function.However, his JSF is valid only for high Re because atlow Re the effect of the surface tension becomes more significantthan the viscosity10 and cannot be ignored.11 Adachi12analyzed the effects of the fluid viscosity and surface tensionin the asymptotic regions of high and low Reynolds number.No analytical equation for the JSF over a wide range of allthree dimensionless group numbers is known. For inviscidfluids (the limit of large Re but still laminar flow), an analyticalform of JSF proposed by many authors can be summarizedas13~z ¼ Fr1r~4 m nBo1r~ 1 ; (3)where the first term is due to gravity while the second is thesurface tension term due to the curvature of the liquid-air jetsurface. Here Bo ¼ We=Fr ¼ 4R20qg=c is the Bond number,characterizing the relative effect of gravity with respect tosurface tension, while m and n are parameters of the model.According to Kurabayashi,5 n ¼ 8, whereas the slendernessapproximation used by Anno6 yelds n ¼ 4. For n ¼ 0 andlarge Bond numbers, Eq. (3) reduces to the well-knownWeisbach equation14~z ¼ Fr1r~4 1 : (4)The effects of surface tension and viscosity on the form ofthe stationary jet are active research topics15–17 and not yetfully understood. In this paper, we develop an analyticalapproach based on energy considerations to derive the governingdifferential equation for the jet radius as a function ofaxial position. We formulate a modified Bernoulli equation18for a free-falling jet that includes the jet interfacial energydensity and losses due to the fluid viscosity. An analyticalequation for the JSF derived in terms of the dimensionlessgroup numbers is compared with experimental observations,and good agreement is obtained.II. FORMULATION OF THE PROBLEMConsider isothermal, laminar flow of an incompressibleNewtonian fluid with viscosity g, surface tension c, and densityq, issuing downward from a circular orifice of radius R0into the air with initial velocity t0 and falling in a gravitationalfield g^z (z being measured vertically downward) in the formof an axisymmetric jet narrowing downward (see Fig. 1).For this jet flow, a modifed Bernoulli-type equation18 alongthe streamline, including energy losses due to fluid viscosity19and free surface energy of the jet, can be written in the form
733 Am.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
ที่นี่ ~ Z ¼ซี = R0 และอา ~ ¼ ~ Z = R0
มีความยาวเจ็ทลดลงและรัศมีเจ็ทตามลำดับและพารามิเตอร์กลุ่มมิติที่สำคัญในปัญหาที่เกิดขึ้นเป็นจำนวน
Froude
ðFrÞที่จำนวนWeber ðWeÞและจำนวน Reynolds
ðReÞให้โดย
Fr ¼ t2
0 2R0g; เรา¼ 2R0qt2 0 ค; Re ¼ 2R0qt0 g: (2) ปริมาณเหล่านี้เป็นตัวแทนตามลำดับผลกระทบญาติของแรงโน้มถ่วงðgÞแรงตึงผิวðcÞและðgÞความหนืดในการเปรียบเทียบความเฉื่อยกับแต่ละที่กำหนดไว้จะมีขนาดใหญ่เมื่อเฉื่อยผลกระทบที่มีขนาดใหญ่เมื่อเทียบกับ. ละเลยแรงตึงผิว ผล Clarke9 มาJSF วิเคราะห์ของเหลวหนืดในแง่ของฟังก์ชั่น Airy. แต่ JSF เขาจะใช้ได้เฉพาะสำหรับเรื่องที่สูงเนื่องจากต่ำRe ผลกระทบของแรงตึงผิวจะกลายเป็นความสำคัญมากขึ้นกว่าviscosity10 และไม่สามารถ ignored.11 Adachi12 การวิเคราะห์ผลกระทบของความหนืดของของเหลวและแรงตึงผิวในภูมิภาค asymptotic จำนวน Reynolds สูงและต่ำ. ไม่สมการวิเคราะห์สำหรับ JSF ในช่วงที่กว้างของทุกหมายเลขสามมิติกลุ่มเป็นที่รู้จักกัน สำหรับ inviscidfluids (ขีด จำกัด ของเรื่องใหญ่ แต่ไหลยังคงเป็น) การวิเคราะห์รูปแบบของJSF เสนอโดยผู้เขียนหลายสามารถสรุปas13 ~ Z ¼ Fr 1 อา ~ 4 มn บ่อ1 อา ~ 1; (3) ที่ระยะแรกคือเนื่องจากแรงโน้มถ่วงในขณะที่สองเป็นระยะแรงตึงผิวอันเนื่องมาจากความโค้งของเจ็ทของเหลวอากาศพื้นผิว นี่บ่อ¼เรา = Fr ¼ 4R2 0qg = c เป็นจำนวนบอนด์พัฒนาการผลกระทบความสัมพันธ์ของแรงโน้มถ่วงที่เกี่ยวกับพื้นผิวความตึงเครียดในขณะที่ม. และ n พารามิเตอร์ของรูปแบบ. ตาม Kurabayashi 5 n ¼ 8 ในขณะที่เรียวประมาณที่ใช้โดย Anno6 yelds n ¼ 4. สำหรับ n ¼ 0 และตัวเลขบอนด์ขนาดใหญ่สมการ (3) ลดที่รู้จักกันดีWeisbach equation14 ~ Z ¼ Fr 1 อา ~ 4 1: (4) ผลกระทบของแรงตึงผิวและความหนืดในรูปแบบของเจ็ทนิ่ง topics15-17 มีการวิจัยที่ใช้งานและยังไม่เข้าใจอย่างเต็มที่ ในบทความนี้เราพัฒนาการวิเคราะห์วิธีการขึ้นอยู่กับการพิจารณาของพลังงานที่ได้รับมาว่าสมการเชิงอนุพันธ์รัศมีเจ็ทเป็นหน้าที่ของตำแหน่งในแนวแกน เรากำหนด equation18 Bernoulli การปรับเปลี่ยนสำหรับเจ็ทลดลงฟรีที่มีเจ็ทพลังงานเฟสความหนาแน่นและความสูญเสียเนื่องจากความหนืดของของเหลว วิเคราะห์สมการสำหรับ JSF มาในแง่ของมิติจำนวนกลุ่มเมื่อเทียบกับการสังเกตการทดลองและข้อตกลงที่ดีจะได้รับ. ครั้งที่สอง การพัฒนาสูตรปัญหาพิจารณา isothermal ไหลราบเรียบของอัดของเหลวนิวตันกับกรัมความหนืดแรงตึงผิวคและความหนาแน่นคิวออกลดลงจากปากกลมR0 รัศมีไปในอากาศด้วยt0 ความเร็วเริ่มต้นและลดลงในแรงโน้มถ่วงสนามกรัม^ ซี (ซีถูกวัดในแนวตั้งลง) ในรูปแบบของการลดเจ็ทaxisymmetric ลง (ดูรูปที่ 1).. สำหรับการไหลของเจ็ทนี้ modifed equation18 Bernoulli ชนิดพร้อมปรับปรุงรวมทั้งการสูญเสียพลังงานเนื่องจากการviscosity19 ของเหลวและพลังงานพื้นผิวฟรีของเจ็ทที่สามารถเขียนในรูปแบบ733 Am































































การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: