Marine algal biofuel is considered a promising solution for energy and environmental challenges. Macroalgal biomass has the potential for bypassing the shortcoming of first and second generation of biomass from food crop and lignocellulosic sources. In this review, we summarize the findings in this domain in the past two decades with a focus on the process of saccharification and fermentation of macroalgae for transportation biofuels. In general, macroalgae contains high levels of carbohydrates, almost no or comparatively less lignin than in terrestrial plants, which makes it a very promising source for liquid biofuel production via bioconversion. After harvest, macroalgal biomass goes through several process units, including pre-treatment and/or saccharification and fermentation to be converted to biofuel, e.g., bioethanol. We also propose strategies for further studies to realize macroalgae biomass potential for transportation bioenergy production.