The thermodynamic signature of these ligands is an entropically dominated binding affinity often accompanied by an unfavorable binding enthalpy. Conformationally constrained ligands cannot easily adapt to changes in the geometry of the binding site, being therefore highly susceptible to drug resistance mutations or naturally occurring genetic polymorphisms. The design of ligands with the capability to adapt to a changing target requires the introduction of certain elements of flexibility or the relaxation of some conformational constraints. Since these compounds pay a larger conformational entropy penalty upon binding, the optimization of their binding affinity requires the presence of a favorable binding enthalpy. In this paper, experimental and computational strategies aimed at identifying and optimizing enthalpic ligands will be discussed and applied to the case of HIV-1 protease inhibitors. It is shown that a thermodynamic guide to drug design permits the identification of drug candidates with a lower susceptibility to target mutations causing drug resistance.