2. Materials and methods
2.1. Chemicals
All the solvents and reagents used in the study were of analytical
grade and used without any further purification. Ultrapure
water was used for dilutions and extractions. Catechin, rutin,
quercetin, gallic acid, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid), 2,2-diphenyl-1-picrylhydrazyl, 2-deoxy-Dribose,
Na2EDTA, ethidium bromide, sodium dodecyl sulphate and
agarose were purchased from Sigma Aldrich Chemical Company
(USA). Folin–Ciocalteu reagent, aluminium chloride and acids and
bases were purchased from Chemical Systems Company. Trichloroacetic
acid, nitroblue tetrazolium, phenazine methosulphate,
sodium nitroprusside, phosphate buffer saline and sulphanilamide,
N-(1-naphthyl)-ethylenediamine dihydrochloride was obtained
from Fisher Scientific Company (UK). MTT bromide was purchased
from Merck Company (Germany).
2.2. Tea samples and preparation
White tea (Silver needle, KWF Food Industries, China), was purchased
from the local market. Tea infusion was prepared by placing
2 g of tea leaves in 100 ml of distilled water at boiling temperature
(100 _C) and brewing for 5 min. The sample (Silver needle white
tea infusion) was filtered through Whatman filter paper No. 1
and the water extracts were freeze–dried. The concentrated extract
was diluted appropriately with distilled water according to each
specific assay and stored at _20 _C until further analysis.
2.3. Total phenolic and flavonoid content of tea extracts
The total phenolic content (TPC) of the different tea extracts
was measured using the Folin–Ciocalteu assay (Singleton & Rossi,
1965) with some modifications. The volumes were scaled down
to accommodate microtiter plate volumes. Briefly, 10 ll of tea
sample was added to the well of the plate, followed by 500 ll of
Folin–Ciocalteu reagent and mixed. After 5 min, 350 ll of 10% Na2-
CO3 was added. After gentle mixing, the samples were left in the
dark for 2 h at room temperature. The absorbance was then read
at 765 nm against the reagent blank containing water instead of
sample. For estimating the TPC values, standard concentrations
of gallic acid were used to construct a calibration curve
(absorbance vs. lg/ml gallic acid). Catechin was used as control.
The values for TPC are expressed in mg gallic acid equivalents
(GAE) per g dried sample (dry weight, dw).
The total flavonoid content (TFC) was evaluated by the protocol
of Chang, Yang, Wen, and Chern (2002). Briefly, 10 ll of 5% sodium
nitrate (NaNO3) was added to 100 ll of the original stock solution
(1 mg/ml) of the samples. The mixture was incubated in the dark
for 5 min. A 10 ll volume of aluminium chloride (AlCl3, 10%) was
added to the mixture and incubated for a further 5 min in the dark.
A 100 ll of NaOH, 1 M, was added to the resulting mixture
followed by addition of 30 ll of distilled water. The absorbance
was read at 510 nm. The total flavonoid content of the sample
was expressed in milligram quercetin equivalents (per g dried
weight). All analyses were carried out in triplicate.
2.4. Antioxidant activities of the white tea extract (WTE)
2.4.1. Ferric reducing antioxidant power
The FRAP assay measures the reducing potential of antioxidants
by reaction with the ferric tripyridyltriazine (Fe3+–TPTZ) complex,
producing a blue colour from the ferrous form that can be detected
by absorbance at 593 nm. Antioxidant compounds that act as
reducing agents exert their effect by donating a hydrogen atom
to the ferric complex, thus breaking the radical chain reaction.
The Fe3+ reducing power (FRAP) of the extract was determined
by the method of Benzie and Strain (1996) with slight modifications.
The volumes were scaled down to accommodate microtiter
plate volumes. The FRAP reagent was prepared by mixing 10 ml
of 300 mM acetate buffer with 1 ml of 10 mM TPTZ (2,4,6 tripyridyl-
S-triazine) in 40 mM of HCl and 1 ml of 20 mM of FeCl3.6H2O.
Then 3 ll of tea extract, standard or positive control and 9 ll of
water were added to 90 ll of FRAP reagent. Absorbance readings
were measured instantly upon addition of the FRAP reagent at
593 nm every 10 s for 4 min. The ferric reducing activity was determined
by plotting a standard curve of FeSO4.7H2O (0–1000 lmol/
l). Results were expressed as mmol ferric reducing activity of the
extracts per g of dried extract.
2.4.2. DPPH radical scavenging activity
Antioxidant activities of the white tea extracts (WTE) were estimated
by measuring their scavenging capacity against the DPPH
radical (Gerhauser et al., 2003). Tea extract (20 ll) was added to
120 ll of a 0.004% MeOH solution of DPPH. Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid) was used as standard.
Absorbance at 517 nm was determined after 30 min incubation
in dark at room temperature, and the percentage of inhibition
was calculated as [(A0 – A1)/A0] _ 100, where A0 is the absorbance
of the control (dH2O), and A1 is the absorbance of the samples. A
graph of the DPPH radical scavenged (%) vs. concentration of sample
was plotted. The IC50 value denotes the effective concentration
of sample used to reduce 50% of available DPPH radicals. In the
DPPH radical scavenging assay, the deep violet colour of DPPH is
reduced to a light yellow colour due to the abstraction of hydrogen
atoms from the antioxidant compound (Molyneux, 2003).
2.4.3. Hydroxyl radical scavenging activity
The effect of hydroxyl radicals was estimated by using the 2-
deoxy-D-ribose oxidation method according to the modified
method established by Halliwell and Gutteridge (1985). The hydroxyl
radical assay is based on the principle that H2O2 in the presence
of Fe+3–EDTA, at pH 7.4, generates free radicals which can be
measured by using deoxyribose.
The following reagents were mixed with 200 ll of sample solution
of various concentrations in the stated order: 200 ll of FeCl3
100 Mm, 200 ll of 1.25 mM H2O2, 200 ll of 2-deoxy D-ribose,
2.5 mM, and 200 ll of 100 mM vitamin C. The reaction mixture
was incubated at 37 _C for 1 h. Then, 100 ll of a 0.5% TBA
(thiobarbituric acid) diluted with NaOH (0.025 M) and 100 ll of a
2.8% TCA (trichloroacetic acid) were added and the mixtures were
placed into a temperature-controlled water bath at 100 _C for
30 min. This was followed by cooling in ice to room temperature,
and then absorbance at 532 nm was measured. All values were
determined in triplicate. The percentage of hydroxyl radical
scavenging activity was calculated using the following equation:
[(A0 – A1)/A0] _ 100, where A0 is the absorbance of the control
(dH2O), and A1 is the absorbance of the samples.
2.4.4. Nitric oxide radical scavenging activity
Nitric oxide radical scavenging activity was determined according
to the method described by Sreejayan and Rao (1997). For the
estimation, 50 ll of sodium nitroprusside (SNP, 5 mM) was added
to 50 ll of various concentrations of the samples. Mixtures were
incubated under visible polychromatic light for 1 h, and then
100 ll of Griess reagent was added to the mixtures and incubated
for a further 5 min and the absorbance measured at 532 nm. Trolox
was used as the standard. To prepare Griess reagent an equal
amount of SA (1% sulphanilamide, 5% H3PO4) and NED (0.1%
N-(1-naphthyl)-ethylenediamine dihydrochloride (NED)) were
mixed. The nitric oxide scavenged (%) was calculated using following
formula:
Nitric oxide radical scavenged; % ผ ฝ๐A0 _ A1=A0_ _ 100;
where A0 is the absorbance of the control (dH2O), and A1 is the
absorbance of the extract/standard. A graph of nitric oxide radical
scavenged (%) vs. concentration of sample was plotted.
2.4.5. Superoxide anion radical scavenging activity
The superoxide anion radical scavenging activity of the sample
was investigated by the method of Liu, Ooi, and Chang (1997). In
this estimation, 50 ll of NADH (468 lM), 50 ll NBT (150 lM)
and 50 ll phenazine methasulphate (PMS, 60 lM) were added to
the various concentrations of the samples. All the above reagents
were diluted in PBS (pH 7.4). The mixtures were incubated for
15 min in the dark and the absorbance measured at 560 nm. Trolox
was used as standard and catechin was used as positive control.
The superoxide anion radical scavenging capacity was calculated
using the following equation:
Superoxide anions scavenging activity % ผ ฝ๐A0 _ A1=A0_ _ 100;
where A0 is the absorbance of the control (dH2O), and A1 is the
absorbance of the extract/standard.
2.5. Cell culture
Human colorectal adenocarcinoma cells (HT-29), human dermal
fibroblasts-adult (HDF-a) and mouse fibroblasts (3T3-L1) were
used in this study. HT-29 and 3T3-L1 cells were purchased from
the American Type Culture Collection (ATCC, USA). HT-29 (ATCC_
HTB-38™) cells were cultured in RPMI-1640 (Sigma, UK) and
3T3-L1 cells (ATCC_ CL-173™) were grown in DMEM (Lonza,
USA). HDF-a was purchased from ScienCell Research Laboratories,
USA. HDF-a cells were routinely cultured in fibroblast growth
medium (ScienCell Research Laboratories, CA, USA).
The cells were supplemented with 5 or 10% foetal bovine serum
(FBS), 100 IU/ml penicillin and 100 lg/ml streptomycin (iDNA,
South America). Cells were grown at 37 _C in a humidified
incubator with 5% CO2.
2.6. In vitro anti-proliferative effects of WTE
The inhibitory effect of WTE on the proliferation of the colorectal
adenocarcinoma cell line, HT-29, was determined by using the
MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide)
assay (Mosmann, 1983). A normal adult human fibroblast
line, HDF-a, was used as a control to identify any cytotoxic effect
of the extracts.
In brief, cells were seeded in 96-well plates at 5000 cells/well
and allowed to attach overnight. Media was changed and the cells
were treated with various concentrations of the extract (0–500 lg/
ml) incubated for an additional 48 h. After 48 h, 20 mM of MTT
solution (5 mg/ml MTT bromide in PBS) was added to each well
and incubated for 4 h at 37 _C. The supernatant was aspirated
and the MTT-formazan crystals f
2. วัสดุและวิธีการ2.1. เคมีภัณฑ์มีการวิเคราะห์หรือสารทำละลายและ reagents ที่ใช้ในการศึกษาทั้งหมดเกรด และใช้โดยไม่ต้องฟอกใด ๆ เพิ่มเติม Ultrapureใช้น้ำสกัดและ dilutions สารสกัดจาก rutinquercetin กรด gallic, trolox (6-hydroxy-2,5,7,8 - tetramethylchroman -2 carboxylic กรด), 2,2-ฟีนิลได-1-picrylhydrazyl, 2-deoxy-DriboseNa2EDTA โบรไมด์ ethidium โซเดียมซัลเฟต dodecyl และซื้อจาก บริษัทเคมี Aldrich ซิก agarose(สหรัฐอเมริกา) รีเอเจนต์ Folin – Ciocalteu อะลูมิเนียมคลอไรด์ และกรด และฐานกำลังซื้อจาก บริษัทระบบเคมี Trichloroacetictetrazolium กรด nitroblue, phenazine methosulphateโซเดียม nitroprusside น้ำเกลือฟอสเฟตบัฟเฟอร์ และ sulphanilamideN-(1-naphthyl)-ethylenediamine dihydrochloride กล่าวจาก Fisher วิทยาศาสตร์บริษัท (UK) MTT โบรไมด์ถูกซื้อจาก บริษัทเมอร์ค (ประเทศเยอรมนี)2.2 การตัวอย่างชาและการเตรียมร้านชาขาว (ซิลเวอร์เข็ม KWF อุตสาหกรรมอาหาร จีน),จากตลาดท้องถิ่น ชาคอนกรีตเตรียมไว้ด้วยใบชา 2 กรัมใน 100 ml ของน้ำกลั่นที่อุณหภูมิเดือด(100 _C) และทำการหมักใน 5 นาที ตัวอย่าง (ขาวเข็มเงินชาคอนกรีต) ที่กรองโดยใช้กระดาษกรอง Whatman No. 1และสารสกัดจากน้ำถูกแช่แข็งแห้ง สารสกัดเข้มข้นถูกทำให้เหมาะสมกับน้ำกลั่นตามแต่ละการวิเคราะห์ และเก็บไว้ที่ _20 _C จนวิเคราะห์ต่อไป2.3 เนื้อหาฟีนอและ flavonoid ที่รวมสารสกัดจากชารวมฟีนอเนื้อหา (สิ่งทอ) สารสกัดจากชาต่าง ๆถูกวัดโดยใช้ทดสอบ Folin-Ciocalteu (เดี่ยว & Rossi1965) ด้วยการปรับเปลี่ยนบางอย่าง ไดรฟ์ข้อมูลถูกปรับลงเพื่อรองรับปริมาณจาน microtiter สั้น ๆ 10 จะชาเพิ่มตัวอย่างการดีจาน ตาม ด้วย 500 จะของรีเอเจนต์ Folin – Ciocalteu และแบบผสม หลังจาก 5 นาที 350 จะ Na2 10%-มีเพิ่ม CO3 หลังจากผสมอ่อนโยน ตัวอย่างที่เหลือในการมืดสำหรับ h 2 ที่อุณหภูมิห้อง Absorbance ที่ถูกอ่านแล้วที่ 765 nm กับรีเอเจนต์ว่างประกอบด้วยน้ำแทนตัวอย่างการ สำหรับการประเมินค่าสิ่งทอ ความเข้มข้นมาตรฐานของกรด gallic ใช้สร้างเส้นโค้งเทียบ(absorbance กับกรด gallic lg/ml) สารสกัดจากถูกใช้เป็นตัวควบคุมค่าสำหรับสิ่งทอจะแสดงเป็นมิลลิกรัมกรด gallic เทียบเท่า(GAE) ต่อกรัม (น้ำหนักแห้ง dw) ตัวอย่างที่แห้งเนื้อหา flavonoid ที่รวม (TFC) ถูกประเมิน โดยโพรโทคอลช้าง ยาง เหวิน และ Chern (2002) สั้น ๆ 10 จะ 5% โซเดียมไนเตรต (NaNO3) เพิ่ม 100 ll โซลูชันหุ้นเดิม(1 mg/ml) ของตัวอย่าง ส่วนผสมที่ incubated ในมืดใน 5 นาที มีไดรฟ์ข้อมูลจะ 10 ของอะลูมิเนียมคลอไรด์ (AlCl3, 10%)เพิ่มส่วนผสม และ incubated สำหรับเพิ่มเติม 5 นาทีในมืด100 ตัวจะของ NaOH, 1 M ได้เพิ่มส่วนผสมได้ตาม ด้วยเพิ่ม 30 จะของน้ำกลั่น Absorbance ที่ถูกอ่านที่ 510 nm Flavonoid ที่รวมเนื้อหาของตัวอย่างได้แสดงในเทียบเท่า quercetin milligram (ต่อกรัมแห้งน้ำหนัก) วิเคราะห์ทั้งหมดถูกดำเนินใน triplicate2.4 การกิจกรรมต้านอนุมูลอิสระของชาขาวสกัด (WTE)2.4.1. เฟอร์ลดอนุมูลอิสระทดสอบ FRAP วัดศักยภาพของสารต้านอนุมูลอิสระลดลงโดยปฏิกิริยากับ tripyridyltriazine เฟอร์ (Fe3 + -TPTZ) ซับซ้อนผลิตสีน้ำเงินจากแบบเหล็กที่สามารถตรวจพบโดย absorbance ที่ 593 nm สารต้านอนุมูลอิสระที่ทำหน้าที่เป็นตัวแทนลดลงแรงผลที่เกิดขึ้น โดยการบริจาคเป็นอะตอมไฮโดรเจนการซับซ้อนเฟอร์ จึงทำลายปฏิกิริยาลูกโซ่รุนแรงFe3 + ลดลงอำนาจ (FRAP) ของสารสกัดได้กำหนดโดยวิธีการ Benzie และต้องใช้ (1996) มีปรับเปลี่ยนเล็กน้อยไดรฟ์ข้อมูลถูกปรับลงเพื่อรองรับ microtiterแผ่นไดรฟ์ข้อมูล รีเอเจนต์ FRAP ถูกเตรียม โดยผสม 10 mlบัฟเฟอร์ acetate 300 มม.มี 1 ml 10 มม. TPTZ (2,4,6 tripyridyl-S-triazine) ใน HCl และ 1 ml ของของ FeCl3.6H2O 20 มม. 40 มม.3 แล้วจะชาแยก ควบคุมมาตรฐาน หรือค่าบวกและ 9 จะของเพิ่มน้ำให้จะของรีเอเจนต์ FRAP อ่าน absorbanceมีวัดทันทีเมื่อมีการเพิ่มของรีเอเจนต์ FRAP ที่593 nm ทุก 10 s สำหรับ 4 min กำหนดกิจกรรมลดลงเฟอร์โดยพล็อตเส้นโค้งมาตรฐานของ FeSO4.7H2O (0-1000 lmol / l) มีแสดงผลเป็น mmol เฟอร์ลดกิจกรรมของการสารสกัดต่อกรัมของสารสกัดแห้ง2.4.2. DPPH รุนแรง scavenging กิจกรรมมีประเมินกิจกรรมการต้านอนุมูลอิสระของสารสกัดจากชาขาว (WTE)โดยการวัดกำลังการผลิต scavenging กับ DPPHรัศมี (Gerhauser et al., 2003) สารสกัดจากชา (20 ll) ถูกเพิ่มเข้าไป120 จะของโซลูชันทานอ 0.004% ของ DPPH Trolox (- hydroxy - 6กรด 2,5,7,8-tetramethylchroman-2-carboxylic) ถูกใช้เป็นมาตรฐานAbsorbance ที่ 517 nm กำหนดหลังจากฟักตัว 30 นาทีในความมืดที่อุณหภูมิห้อง และเปอร์เซ็นต์การยับยั้งคำนวณเป็น [(A0 – A1)/A0] _ 100, absorbance ที่ A0ควบคุม (dH2O), และ A1 absorbance ของตัวอย่าง Aกราฟ DPPH รัศมี scavenged (%) เทียบกับความเข้มข้นของตัวอย่างถูกพล็อต ค่า IC50 แสดงความเข้มข้นที่มีประสิทธิภาพของตัวอย่างที่ใช้ในการลด 50% ของอนุมูล DPPH ว่าง ในเป็นสีอมม่วงลึกของ DPPH DPPH รุนแรง scavenging assayลดลงจะมีสีเหลืองอ่อนเนื่องจาก abstraction ของไฮโดรเจนอะตอมจากสารต้านอนุมูลอิสระผสม (Molyneux, 2003)2.4.3 กิจกรรม scavenging รุนแรงไฮดรอกซิลมีประเมินผลของอนุมูลไฮดรอกซิล โดยใช้ 2-วิธีการออกซิเดชัน deoxy-D ribose ตามที่แก้ไขวิธีที่ก่อตั้งขึ้น โดย Halliwell และ Gutteridge (1985) ไฮดรอกซิลทดสอบรุนแรงตามหลักที่ H2O2 ในสถานะของ Fe + 3 – EDTA ที่ pH 7.4 สร้างอนุมูลอิสระซึ่งสามารถวัด โดยใช้ deoxyriboseReagents ดังต่อไปนี้ถูกผสมกับ 200 จะแก้ปัญหาอย่างของความเข้มข้นต่าง ๆ ตามลำดับที่ระบุ: 200 จะ FeCl3100 mm, 200 จะของ H2O2 1.25 mM, 200 จะของ 2 deoxy D-ribose2.5 มม. และ 200 จะ 100 มม. C. วิตามิน ส่วนผสมของปฏิกิริยามี incubated ที่ _C 37 สำหรับ 1 h 100 แล้ว จะของ TBA 0.5%(กรด thiobarbituric) ผสมกับ NaOH (0.025 M) และ 100 จะของเป็น2.8% TCA (trichloroacetic กรด) ถูกเพิ่มเข้ามา และส่วนผสมได้วางลงในอ่างน้ำควบคุมอุณหภูมิที่ 100 _C สำหรับ30 นาที นี้ถูกตาม ด้วยการทำความเย็นในน้ำแข็งที่อุณหภูมิห้องแล้ว absorbance ที่ 532 nm ที่วัด ค่าทั้งหมดได้กำหนดใน triplicate เปอร์เซ็นต์ของไฮดรอกscavenging กิจกรรมถูกคำนวณโดยใช้สมการต่อไปนี้:[(A0 – A1)/A0] _ 100, absorbance ของตัวควบคุม A0(dH2O), และ A1 absorbance ของตัวอย่าง2.4.4 การไนตริกออกไซด์รุนแรง scavenging กิจกรรมกำหนดกิจกรรม scavenging ไนตริกออกไซด์รุนแรงตามวิธีที่อธิบายไว้ โดย Sreejayan และราว (1997) สำหรับการการประเมิน 50 เพิ่มจะ nitroprusside โซเดียม (SNP, 5 มม.)ถึง 50 จะของความเข้มข้นต่าง ๆ ของตัวอย่าง มีส่วนผสมincubated ภายใต้แสงที่มองเห็น polychromatic สำหรับ 1 h แล้ว100 ll Griess รีเอเจนต์ถูกเพิ่มลงในส่วนผสม และ incubatedเพิ่มเติม 5 นาทีและ absorbance ที่วัดที่ 532 nm Troloxใช้เป็นมาตรฐาน เตรียมรีเอเจนต์ Griess เท่ากันจำนวน SA (sulphanilamide 1%, 5% H3PO4) และเน็ด (0.1%N-(1-naphthyl)-ethylenediamine dihydrochloride (NED)) ได้ผสม ไนตริกออกไซด์ scavenged (%) ถูกคำนวณโดยใช้ต่อไปนี้สูตร:Scavenged รัศมีไนตริกออกไซด์ %ผ ฝ๐A0 _ A1 _ A0_ 100 =ที่ A0 absorbance ของตัวควบคุม (dH2O), และ A1 เป็นการabsorbance ของสารสกัด/มาตรฐาน กราฟของไนตริกออกไซด์รุนแรงscavenged (%) เทียบกับความเข้มข้นของตัวอย่างถูกพล็อต2.4.5. ซูเปอร์ออกไซด์ anion รุนแรง scavenging กิจกรรมซูเปอร์ออกไซด์ anion รุนแรง scavenging กิจกรรมของตัวอย่างถูกตรวจสอบ โดยวิธีการเล่า Ooi และช้าง (1997) ในประมาณนี้ 50 จะของ NADH (468 lM), 50 จะเอ็นบีที (150 lM)และ 50 จะ phenazine methasulphate (PMS, 60 lM) ถูกเพิ่มเข้าไปความเข้มข้นต่าง ๆ ของตัวอย่าง Reagents ข้างต้นทั้งหมดถูกทำให้เจือจางใน PBS (pH 7.4) น้ำยาผสมจะถูก incubated สำหรับ15 นาทีในมืดและ absorbance ที่วัดได้ที่ 560 nm Troloxใช้เป็นมาตรฐาน และใช้สารสกัดจากตัวควบคุมบวกซูเปอร์ออกไซด์ anion รุนแรง scavenging กำลังการผลิตถูกคำนวณใช้สมการต่อไปนี้:ซูเปอร์ออกไซด์ anions scavenging กิจกรรม%ผ ฝ๐A0 _ A1 _ A0_ 100 =ที่ A0 absorbance ของตัวควบคุม (dH2O), และ A1 เป็นการabsorbance ของสารสกัด/มาตรฐาน2.5 เพาะเลี้ยงเซลล์เซลล์มะเร็งชนิดต่อมลำไส้มนุษย์ (เอชที-29), ผิวหนังมนุษย์ผู้ใหญ่ fibroblasts (HDF-a) และ fibroblasts เมาส์ (3T3-L1)ใช้ในการศึกษานี้ ซื้อจากเซลล์เอชที-29 และ 3T3 L1ชนิดอเมริกันวัฒนธรรมชุด (ATCC สหรัฐอเมริกา) เอชที-29 (ATCC_HTB-38 ™) เซลล์มีอ่างใน RPMI 1640 (ซิก UK) และเซลล์ 3T3 L1 (™ ATCC_ CL-173) ได้เติบโตขึ้นใน DMEM (Lonzaสหรัฐอเมริกา) HDF ที่ถูกสั่งซื้อจาก ScienCell ปฏิบัติการสหรัฐอเมริกา เซลล์ HDF ที่มีเป็นประจำอ่างในเจริญเติบโตของ fibroblastกลาง (ห้องปฏิบัติการวิจัย ScienCell, CA, USA)เซลล์ถูกเสริม ด้วย 5 หรือ 10% foetal วัวซีรั่ม(FBS), 100 IU/ml ยาเพนนิซิลลินและ streptomycin lg/ml 100 (iDNAอเมริกาใต้) เซลล์มีการเติบโตที่ _C 37 ในการ humidifiedบ่มเพาะวิสาหกิจกับ 5% CO22.6 การผลกระทบต่อต้าน proliferative ต้นเพาะใน WTEผลลิปกลอสไขของ WTE กไปลำไส้มะเร็งชนิดต่อมเซลล์บรรทัด กำหนดเอชที-29 โดยMTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-ฟีนิลได tetrazolium โบรไมด์)วิเคราะห์ (Mosmann, 1983) Fibroblast มนุษย์ผู้ใหญ่ปกติบรรทัด HDF- ได้ ใช้เป็นตัวควบคุมเพื่อระบุผลใด ๆ cytotoxicสารสกัดจากสังเขป เซลล์ถูก seeded ในแผ่น 96 ดีที่เซลล์ดี 5000และได้รับอนุญาตให้แนบแอร์พอร์ตโอเวอร์ไนท์ สื่อมีการเปลี่ยนแปลง และเซลล์ต่าง ๆ ความเข้มข้นของสารสกัดได้รับ (0-500 แอลจี /incubated มล.) สำหรับการ h 48 เพิ่มเติม หลังจาก 48 h, 20 มม.ของ MTTโซลูชัน (5 mg/ml MTT โบรไมด์ใน PBS) ถูกเพิ่มเข้าไปด้วยละและ incubated สำหรับ h 4 ที่ 37 _C Aspirated supernatant ถูกและ f ผลึก MTT formazan
การแปล กรุณารอสักครู่..
2. Materials and methods
2.1. Chemicals
All the solvents and reagents used in the study were of analytical
grade and used without any further purification. Ultrapure
water was used for dilutions and extractions. Catechin, rutin,
quercetin, gallic acid, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid), 2,2-diphenyl-1-picrylhydrazyl, 2-deoxy-Dribose,
Na2EDTA, ethidium bromide, sodium dodecyl sulphate and
agarose were purchased from Sigma Aldrich Chemical Company
(USA). Folin–Ciocalteu reagent, aluminium chloride and acids and
bases were purchased from Chemical Systems Company. Trichloroacetic
acid, nitroblue tetrazolium, phenazine methosulphate,
sodium nitroprusside, phosphate buffer saline and sulphanilamide,
N-(1-naphthyl)-ethylenediamine dihydrochloride was obtained
from Fisher Scientific Company (UK). MTT bromide was purchased
from Merck Company (Germany).
2.2. Tea samples and preparation
White tea (Silver needle, KWF Food Industries, China), was purchased
from the local market. Tea infusion was prepared by placing
2 g of tea leaves in 100 ml of distilled water at boiling temperature
(100 _C) and brewing for 5 min. The sample (Silver needle white
tea infusion) was filtered through Whatman filter paper No. 1
and the water extracts were freeze–dried. The concentrated extract
was diluted appropriately with distilled water according to each
specific assay and stored at _20 _C until further analysis.
2.3. Total phenolic and flavonoid content of tea extracts
The total phenolic content (TPC) of the different tea extracts
was measured using the Folin–Ciocalteu assay (Singleton & Rossi,
1965) with some modifications. The volumes were scaled down
to accommodate microtiter plate volumes. Briefly, 10 ll of tea
sample was added to the well of the plate, followed by 500 ll of
Folin–Ciocalteu reagent and mixed. After 5 min, 350 ll of 10% Na2-
CO3 was added. After gentle mixing, the samples were left in the
dark for 2 h at room temperature. The absorbance was then read
at 765 nm against the reagent blank containing water instead of
sample. For estimating the TPC values, standard concentrations
of gallic acid were used to construct a calibration curve
(absorbance vs. lg/ml gallic acid). Catechin was used as control.
The values for TPC are expressed in mg gallic acid equivalents
(GAE) per g dried sample (dry weight, dw).
The total flavonoid content (TFC) was evaluated by the protocol
of Chang, Yang, Wen, and Chern (2002). Briefly, 10 ll of 5% sodium
nitrate (NaNO3) was added to 100 ll of the original stock solution
(1 mg/ml) of the samples. The mixture was incubated in the dark
for 5 min. A 10 ll volume of aluminium chloride (AlCl3, 10%) was
added to the mixture and incubated for a further 5 min in the dark.
A 100 ll of NaOH, 1 M, was added to the resulting mixture
followed by addition of 30 ll of distilled water. The absorbance
was read at 510 nm. The total flavonoid content of the sample
was expressed in milligram quercetin equivalents (per g dried
weight). All analyses were carried out in triplicate.
2.4. Antioxidant activities of the white tea extract (WTE)
2.4.1. Ferric reducing antioxidant power
The FRAP assay measures the reducing potential of antioxidants
by reaction with the ferric tripyridyltriazine (Fe3+–TPTZ) complex,
producing a blue colour from the ferrous form that can be detected
by absorbance at 593 nm. Antioxidant compounds that act as
reducing agents exert their effect by donating a hydrogen atom
to the ferric complex, thus breaking the radical chain reaction.
The Fe3+ reducing power (FRAP) of the extract was determined
by the method of Benzie and Strain (1996) with slight modifications.
The volumes were scaled down to accommodate microtiter
plate volumes. The FRAP reagent was prepared by mixing 10 ml
of 300 mM acetate buffer with 1 ml of 10 mM TPTZ (2,4,6 tripyridyl-
S-triazine) in 40 mM of HCl and 1 ml of 20 mM of FeCl3.6H2O.
Then 3 ll of tea extract, standard or positive control and 9 ll of
water were added to 90 ll of FRAP reagent. Absorbance readings
were measured instantly upon addition of the FRAP reagent at
593 nm every 10 s for 4 min. The ferric reducing activity was determined
by plotting a standard curve of FeSO4.7H2O (0–1000 lmol/
l). Results were expressed as mmol ferric reducing activity of the
extracts per g of dried extract.
2.4.2. DPPH radical scavenging activity
Antioxidant activities of the white tea extracts (WTE) were estimated
by measuring their scavenging capacity against the DPPH
radical (Gerhauser et al., 2003). Tea extract (20 ll) was added to
120 ll of a 0.004% MeOH solution of DPPH. Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid) was used as standard.
Absorbance at 517 nm was determined after 30 min incubation
in dark at room temperature, and the percentage of inhibition
was calculated as [(A0 – A1)/A0] _ 100, where A0 is the absorbance
of the control (dH2O), and A1 is the absorbance of the samples. A
graph of the DPPH radical scavenged (%) vs. concentration of sample
was plotted. The IC50 value denotes the effective concentration
of sample used to reduce 50% of available DPPH radicals. In the
DPPH radical scavenging assay, the deep violet colour of DPPH is
reduced to a light yellow colour due to the abstraction of hydrogen
atoms from the antioxidant compound (Molyneux, 2003).
2.4.3. Hydroxyl radical scavenging activity
The effect of hydroxyl radicals was estimated by using the 2-
deoxy-D-ribose oxidation method according to the modified
method established by Halliwell and Gutteridge (1985). The hydroxyl
radical assay is based on the principle that H2O2 in the presence
of Fe+3–EDTA, at pH 7.4, generates free radicals which can be
measured by using deoxyribose.
The following reagents were mixed with 200 ll of sample solution
of various concentrations in the stated order: 200 ll of FeCl3
100 Mm, 200 ll of 1.25 mM H2O2, 200 ll of 2-deoxy D-ribose,
2.5 mM, and 200 ll of 100 mM vitamin C. The reaction mixture
was incubated at 37 _C for 1 h. Then, 100 ll of a 0.5% TBA
(thiobarbituric acid) diluted with NaOH (0.025 M) and 100 ll of a
2.8% TCA (trichloroacetic acid) were added and the mixtures were
placed into a temperature-controlled water bath at 100 _C for
30 min. This was followed by cooling in ice to room temperature,
and then absorbance at 532 nm was measured. All values were
determined in triplicate. The percentage of hydroxyl radical
scavenging activity was calculated using the following equation:
[(A0 – A1)/A0] _ 100, where A0 is the absorbance of the control
(dH2O), and A1 is the absorbance of the samples.
2.4.4. Nitric oxide radical scavenging activity
Nitric oxide radical scavenging activity was determined according
to the method described by Sreejayan and Rao (1997). For the
estimation, 50 ll of sodium nitroprusside (SNP, 5 mM) was added
to 50 ll of various concentrations of the samples. Mixtures were
incubated under visible polychromatic light for 1 h, and then
100 ll of Griess reagent was added to the mixtures and incubated
for a further 5 min and the absorbance measured at 532 nm. Trolox
was used as the standard. To prepare Griess reagent an equal
amount of SA (1% sulphanilamide, 5% H3PO4) and NED (0.1%
N-(1-naphthyl)-ethylenediamine dihydrochloride (NED)) were
mixed. The nitric oxide scavenged (%) was calculated using following
formula:
Nitric oxide radical scavenged; % ผ ฝ๐A0 _ A1=A0_ _ 100;
where A0 is the absorbance of the control (dH2O), and A1 is the
absorbance of the extract/standard. A graph of nitric oxide radical
scavenged (%) vs. concentration of sample was plotted.
2.4.5. Superoxide anion radical scavenging activity
The superoxide anion radical scavenging activity of the sample
was investigated by the method of Liu, Ooi, and Chang (1997). In
this estimation, 50 ll of NADH (468 lM), 50 ll NBT (150 lM)
and 50 ll phenazine methasulphate (PMS, 60 lM) were added to
the various concentrations of the samples. All the above reagents
were diluted in PBS (pH 7.4). The mixtures were incubated for
15 min in the dark and the absorbance measured at 560 nm. Trolox
was used as standard and catechin was used as positive control.
The superoxide anion radical scavenging capacity was calculated
using the following equation:
Superoxide anions scavenging activity % ผ ฝ๐A0 _ A1=A0_ _ 100;
where A0 is the absorbance of the control (dH2O), and A1 is the
absorbance of the extract/standard.
2.5. Cell culture
Human colorectal adenocarcinoma cells (HT-29), human dermal
fibroblasts-adult (HDF-a) and mouse fibroblasts (3T3-L1) were
used in this study. HT-29 and 3T3-L1 cells were purchased from
the American Type Culture Collection (ATCC, USA). HT-29 (ATCC_
HTB-38™) cells were cultured in RPMI-1640 (Sigma, UK) and
3T3-L1 cells (ATCC_ CL-173™) were grown in DMEM (Lonza,
USA). HDF-a was purchased from ScienCell Research Laboratories,
USA. HDF-a cells were routinely cultured in fibroblast growth
medium (ScienCell Research Laboratories, CA, USA).
The cells were supplemented with 5 or 10% foetal bovine serum
(FBS), 100 IU/ml penicillin and 100 lg/ml streptomycin (iDNA,
South America). Cells were grown at 37 _C in a humidified
incubator with 5% CO2.
2.6. In vitro anti-proliferative effects of WTE
The inhibitory effect of WTE on the proliferation of the colorectal
adenocarcinoma cell line, HT-29, was determined by using the
MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide)
assay (Mosmann, 1983). A normal adult human fibroblast
line, HDF-a, was used as a control to identify any cytotoxic effect
of the extracts.
In brief, cells were seeded in 96-well plates at 5000 cells/well
and allowed to attach overnight. Media was changed and the cells
were treated with various concentrations of the extract (0–500 lg/
ml) incubated for an additional 48 h. After 48 h, 20 mM of MTT
solution (5 mg/ml MTT bromide in PBS) was added to each well
and incubated for 4 h at 37 _C. The supernatant was aspirated
and the MTT-formazan crystals f
การแปล กรุณารอสักครู่..
2 . วัสดุและวิธีการ
2.1 . สารเคมี
ทั้งสารละลายและสารเคมีที่ใช้ในการวิจัย วิเคราะห์ และใช้บำบัดน้ำเสีย
เกรดโดยไม่ต้องเพิ่มเติมใด ๆ บริสุทธิ์มาก
น้ำใช้และวิธีการสกัด . Catechin , รูติน
, quercetin , ฝรั่งเศสกรด สาร ( 6-hydroxy-2,5,7,8-tetramethylchroman -
2-carboxylic acid ) , 2,2-diphenyl-1-picrylhydrazyl 2-deoxy-dribose
na2edta คู่ , , , โบรไมด์ ,โซเดียมโดเดซิลซัลเฟตและ
( ซื้อจาก บริษัท เคมีซิกม่า Aldrich
( USA ) folin – ciocalteu เก็บสารอะลูมิเนียมคลอไรด์และกรดและ
ฐานซื้อจาก บริษัท ระบบทางเคมี กรดไตรคลอโรอะซิติก nitroblue tetrazolium
, ,
methosulphate phenazine , โซเดียมไนโตรปรัสไซด์เกลือฟอสเฟตบัฟเฟอร์ และ sulphanilamide
,- ( 1-naphthyl ) : ลลีนไดแอมได้
จาก บริษัท วิทยาศาสตร์ ฟิชเชอร์ ( สหราชอาณาจักร ) MTT โบรไมด์ถูกซื้อจาก บริษัท เมิร์ค ( เยอรมนี )
.
2.2 . ตัวอย่างชาและการเตรียม
ชาขาว ( เข็มเงิน kwf อุตสาหกรรมอาหาร , จีน ) , ซื้อ
จากตลาดท้องถิ่น แช่ชาเตรียมวาง
2 กรัมของใบชาใน 100 มิลลิลิตรของน้ำที่อุณหภูมิเดือด
( 100 _c ) และต้มเป็นเวลา 5 นาที ตัวอย่าง ( เข็มเงิน ) ชาขาว
) ถูกกรองผ่านกระดาษกรอง เบอร์ 1 whatman
และสารสกัดน้ำถูกแช่แข็งและอบแห้ง สกัดเข้มข้นเจือจางด้วยน้ำกลั่น (
) ตามแต่ละที่เฉพาะเจาะจงและเก็บไว้ที่ _20 _c จนถึงการวิเคราะห์เพิ่มเติม .
2.3 สารฟลาโวนอยด์และปริมาณรวมสารสกัดชา
ปริมาณฟีนอลิกทั้งหมด ( TPC ) ของ
สารสกัดจากชาที่แตกต่างกันถูกวัดโดยใช้ folin – ciocalteu assay ( ฌอน แอสติน&รอสซี่
1965 ) ที่มีการปรับเปลี่ยน ปริมาณถูกลดขนาดลง
เพื่อรองรับปริมาณไมโครเพลท สั้น , ตัวอย่างชา
10 จะถูกเพิ่มเข้าไปในจาน ตามด้วย 500 จะ
folin – ciocalteu สารเคมีผสม หลังจาก 5 นาที , 350 จะ 10 % N -
co3 ถูกเพิ่มเข้ามา หลังจากอ่อนโยนผสม ตัวอย่างที่ถูกทิ้งไว้ในที่มืด
2 ชั่วโมงที่อุณหภูมิห้อง นได้อ่าน
ที่ 765 nm กับสารเคมี เปล่าประกอบด้วยน้ำแทน
ตัวอย่าง การประมาณค่าเอฟที มาตรฐานความเข้มข้นของกรดแกลลิค
ถูกใช้เพื่อสร้างเป็นรูปโค้ง
( ค่าเทียบกับ LG / มิลลิลิตรเพิ่มขึ้น ) Catechin ใช้ควบคุม
ค่าสำหรับ TPC จะแสดงออกในมิลลิกรัมเพิ่มขึ้นเทียบเท่า
( เก ) / กรัม ( น้ำหนักแห้งตัวอย่างแห้ง , แห้ง ) .
ปริมาณฟลาโวนอยด์ ( TFC ) คือการประเมินโดยโปรโตคอล
ของชาง หยาง เหวิน และเชิญ ( 2002 ) สั้น ๆ , 10 จะได้ 5 % โซเดียมไนเตรท (
NaNO3 ) คือเพิ่ม 100 จะแก้ปัญหาหุ้นเดิม
( 1 mg / ml ) ของตัวอย่างที่ ส่วนผสมจะถูกเลี้ยงในที่มืด
5 นาที10 จะปริมาณของอลูมิเนียมคลอไรด์ ( alcl3 10% ) คือ
เพิ่มการผสมบ่มสำหรับอีก 5 นาทีในที่มืด
100 จะใช้ 1 M , เพิ่มผลผสม
ตามด้วยนอกเหนือจาก 30 จะกลั่นน้ำ น
คืออ่านที่ 510 nm . ปริมาณฟลาโวนอยด์ทั้งหมดของตัวอย่าง
ถูกแสดงในมิลลิกรัมเทียบเท่าเคอร์ ( / กรัมน้ำหนักแห้ง
)ทั้งหมดวิเคราะห์ทดลองทั้งสามใบ
2.4 . กิจกรรมต้านออกซิเดชันของสารสกัดชาขาว ( wte )
เครื่องมือกำจัดเพื่อย้าย . เฟอริคลดสารต้านอนุมูลอิสระพลังงานมาตรการลดใช้ Frap
ศักยภาพของสารต้านอนุมูลอิสระ
โดยปฏิกิริยากับ tripyridyltriazine เฟอร์ ( fe3 – tptz ) ซับซ้อน
การผลิตสีสีฟ้าจากเหล็กแบบที่สามารถตรวจพบได้โดยค่า
ที่ 593 nm .สารประกอบที่เป็นสารต้านอนุมูลอิสระช่วยลดผลกระทบของพวกเขาโดยตัวแทนออกแรง
บริจาคอะตอมไฮโดรเจนจะซับซ้อน เฟอริคจึงทำลายปฏิกิริยาลูกโซ่อนุมูลอิสระ .
fe3 ลดพลังงาน ( VDO ) สารสกัดตั้งใจ
โดยวิธีการของ benzie และความเครียด ( 1996 ) ที่มีการปรับเปลี่ยนเล็กน้อย ปริมาณ ถูกลดระดับลงมา
รองรับปริมาณไมโคร
จานใช้ Frap รีเอเจนต์ถูกเตรียมโดยผสม 10 ml
ของบัฟเฟอร์อะซิเตท 300 มม. 1 มิลลิลิตร tptz 10 มม. ( 2,4,6 tripyridyl -
คือ 40 มม. ) ใน HCl และ 1 มล. 20 มม. fecl3.6h2o .
3 จะสารสกัดจากชา , มาตรฐานหรือบวกการควบคุมและ 9 จะ
น้ำเพิ่ม 90 จะใช้ Frap . วัดค่าได้ทันทีเมื่ออ่าน
ส่วนของ VDO รีเอเจนต์ที่ 593 nm ทุก 10 วินาที 4 นาทีการลดกิจกรรมที่ถูกกำหนดโดยเฟอร์
พล็อตเส้นโค้งมาตรฐานของ feso4.7h2o ( 0 – 1000 lmol /
L ) ผลลัพธ์ที่ได้แสดงเป็นมิลลิโมลเฟอร์ลดกิจกรรมของสารสกัดแห้งต่อ G
.
2.4.2 . dpph เป็นตัวเร่งปฏิกิริยากิจกรรม
ฤทธิ์ต้านออกซิเดชันของสารสกัดชาขาว ( wte ) โดยประเมินโดยการวัดความจุของการ
กับ dpph หัวรุนแรง ( gerhauser et al . ,2003 ) สารสกัดจากชา ( 20 จะเพิ่ม
120 จะของ 0.004 % ปริมาณสารละลาย dpph . สาร ( 6-hydroxy -
2,5,7,8-tetramethylchroman-2-carboxylic acid ) ที่ใช้เป็นมาตรฐาน ค่าการดูดกลืนแสงที่ 517 nm ตั้งใจ
หลังจาก 30 นาทีระยะเวลาในที่มืดอุณหภูมิห้อง และร้อยละของการยับยั้งคำนวณเป็น [ (
A0 และ A1 ) / A0 ] _ 100 ซึ่งเป็นค่า A0
ของการควบคุม ( dh2o ) ,และ A1 มีการดูดกลืนแสงของตัวอย่าง a
กราฟของ dpph รุนแรงคือ ( % ) และความเข้มข้นของตัวอย่าง
คือวางแผน ค่าแสดงประสิทธิภาพของ ic50
ของกลุ่มตัวอย่างที่ใช้เพื่อลด 50% ของอนุมูล dpph ใช้ได้ ใน
dpph เป็นตัวเร่งปฏิกิริยาโดยลึกสีม่วงเป็นสี dpph
ลดลงเป็นสีเหลืองอ่อน เนื่องจากทางนามธรรมของไฮโดรเจน
อะตอมจากสารอนุมูลอิสระ ( มูลิเน็กซ์ , 2003 ) .
2.4.3 . เอชทีทีพีการกิจกรรม
ผลของอนุมูลไฮดรอกซิลประมาณโดยใช้ 2 -
deoxy-d-ribose ออกซิเดชันวิธีตามแบบและวิธีการที่จัดตั้งขึ้นโดย gutteridge
Halliwell ( 1985 ) ไฮดรอกซิล
หัวรุนแรง การทดสอบจะขึ้นอยู่กับหลักการที่ H2O2 ในการแสดง
เหล็ก 3 – EDTA ที่ pH 7.4 ,สร้างอนุมูลอิสระซึ่งสามารถวัดโดยใช้ ดีออกซีไรโบส
.
ต่อไปนี้เป็นสารเคมีผสมกับสารละลายตัวอย่าง 200 จะ
ความเข้มข้นต่าง ๆ ในการระบุคำสั่ง : 200 จะ FeCl3
100 มม. , 200 จะของ H2O2 1.25 มม. 200 จะ d-ribose
2-deoxy , 2.5 มม. และ 200 จะวิตามิน 100 อืม . . ปฏิกิริยาผสม
ถูกบ่มที่ 37 _c เป็นเวลา 1 ชั่วโมงแล้ว 100 จะเป็น 0.5% TBA
( เท่ากับกรดเจือจางด้วย NaOH ( 0.025 m ) และ 100 จะเป็น
2.8 % TCA ( กรดไตรคลอโรอะซิติก ) เพิ่มส่วนผสมถูก
วางลงในอ่างน้ำควบคุมอุณหภูมิที่ 100 _c สำหรับ
30 นาที นี้ตามด้วยน้ำแข็งเย็นในอุณหภูมิห้อง แล้วค่า
ที่ 532 นาโนเมตร คือ วัด ทั้งหมดค่า
กำหนดทั้งสามใบ เปอร์เซ็นต์ของเอชทีทีพี
กิจกรรมคือการคำนวณโดยใช้สมการต่อไปนี้ :
[ ( A0 และ A1 ) / A0 ] _ 100 ที่ A0 คือการดูดกลืนแสงของการควบคุม
( dh2o ) และ A1 มีการดูดกลืนแสงของตัวอย่าง
2.4.4 . ไนตริกออกไซด์เป็นตัวเร่งปฏิกิริยากิจกรรม
ไนตริกออกไซด์เป็นตัวเร่งปฏิกิริยาได้กำหนดกิจกรรมตาม
วิธีการบรรยายโดยและ sreejayan Rao ( 1997 ) สำหรับ
ประมาณโซเดียม nitroprusside ( SNP 50 จะได้เพิ่ม
5 มิลลิเมตร ) 50 จะความเข้มข้นต่าง ๆ ของตัวอย่าง ผสมบ่มภายใต้แสงที่มองเห็น polychromatic )
1 H แล้ว
100 จะ griess รีเอเจนต์ถูกเพิ่มเข้าไปผสมบ่ม
สำหรับอีก 5 นาทีและค่าวัดที่ 532 นาโนเมตร สาร
ถูกใช้เป็นมาตรฐาน เตรียม griess รีเอเจนต์เท่าเทียม
จํานวนซา ( 1% sulphanilamide , 5% H3PO4 ) และเน็ด ( 0.1 %
- ( 1-naphthyl ลลีนไดแอม ) - : ( เน็ต ) )
ผสม ออกไซด์ไนตริกคือ ( % ) คือคำนวณโดยใช้สูตรต่อไปนี้ :
ไนตริกออกไซด์ที่รุนแรงคือ ; % ผฝ๐ A0 A1 a0_ _ _ = 100 ; A0
ที่เป็นค่าของการควบคุม ( dh2o ) และ A1 เป็น
การดูดกลืนแสงของมาตรฐานสกัด / กราฟของไนตริกออกไซด์หัวรุนแรง
คือ ( 1 ) กับความเข้มข้นของตัวอย่าง คือ วางแผน 2.4.5
. ซูเปอร์ออกไซด์แอนไอออนประจุลบเป็นตัวเร่งปฏิกิริยาออกไซด์เป็นตัวเร่งปฏิกิริยากิจกรรม
กิจกรรมตัวอย่างที่ถูกตรวจสอบโดยวิธีการของหลิว Ooi และชาง ( 1997 ) ใน
ประมาณนี้ 50 จะของ NADH ( 468 LM ) , 50 จะ NBT ( 150 Lm )
5 จะ phenazine methasulphate ( PMS , 60 LM ) เพิ่ม
ความเข้มข้นต่างๆของตัวอย่างทั้งหมดข้างต้น reagents
ลดใน PBS ( pH 7.4 ) ผสมอยู่ 20% โดย
15 นาทีในที่มืดและค่าวัดที่ 560 นาโนเมตร สาร
ถูกใช้เป็นมาตรฐานและ Catechin ใช้เป็นตัวควบคุมบวก .
ออกไซด์เป็นตัวเร่งปฏิกิริยาความจุประจุลบถูกคำนวณโดยใช้สมการต่อไปนี้ :
ซุปเปอร์ไอออนการกิจกรรมผฝ๐ _ A0 A1 =
a0_ _ 100ที่ A0 คือการดูดกลืนแสงของการควบคุม ( dh2o ) และ A1 เป็นค่ามาตรฐานสารสกัด /
.
2.5 การเพาะเลี้ยงเซลล์มนุษย์และเซลล์ ( ht-29 adenocarcinoma
) จากเนื้อมนุษย์ผู้ใหญ่ ( hdf-a ) และไฟโบรบลาส เมาส์ ( 3t3-l1 )
ที่ใช้ในการศึกษาครั้งนี้ และ ht-29 3t3-l1 เซลล์ ซื้อมาจากอเมริกา ประเภท วัฒนธรรม
คอลเลกชัน ( ATCC , USA ) ht-29 ( atcc_
htb-38 ™ ) เซลล์เพาะเลี้ยงใน rpmi-1640 ( Sigma , UK ) และ
3t3-l1 เซลล์ ( atcc_ cl-173 ™ ) ปลูกใน dmem ( Power
, USA ) hdf-a ซื้อจากห้องปฏิบัติการวิจัย sciencell
, สหรัฐอเมริกา hdf-a เซลล์ถูกตรวจเพาะเลี้ยงในอาหารเลี้ยงเชื้อ
ไฟโบรบลาสต์ ( ห้องปฏิบัติการ วิจัย sciencell CA , USA ) .
เซลล์ที่ถูกเสริมด้วย 5 หรือ 10 % foetal วัวเซรั่ม
( FBS )100 IU / ml และ streptomycin 100 เพนนิซิลิน LG / ml ( iDNA
, อเมริกาใต้ ) เซลล์มีการโตขึ้นที่ 37 _c ในตู้อบที่มีคาร์บอนไดออกไซด์ 5% humidified
.
2.6 ในการต่อต้านผลของ wte proliferative
ผลยับยั้งของ wte ในการแพร่กระจายของลำไส้ใหญ่ adenocarcinoma
เซลล์บรรทัด ht-29 ถูกกำหนดโดยการใช้
MTT ( 3 - ( 4,5-dimethyl thiazol-2-yl ) - 2,5-diphenyl tetrazolium โบรไมด์ )
( mosmann ) ,1983 ) ปกติมนุษย์ผู้ใหญ่ fibroblast
บรรทัด hdf-a ถูกใช้เป็นตัวควบคุมเพื่อระบุใด ๆที่เป็นพิษผลของสารสกัด
.
สังเขป เซลล์ถูก seeded ใน 96 ดีจานที่ 5 , 000 เซลล์ / ดี
และอนุญาตให้ค้างคืน สื่อมีการเปลี่ยนแปลงและได้รับการรักษาด้วยเซลล์
ความเข้มข้นต่าง ๆ ของน้ำ ( 0 - 500 LG /
มิลลิลิตรบ่มให้อีก 48 ชั่วโมง หลังจาก 48 ชั่วโมงของ MTT
20 มิลลิเมตรโซลูชั่น ( 5 mg / ml MTT โบรไมด์ใน PBS ) เพิ่มกัน
4 H และ บ่มที่ 37 _c . น่านคือ aspirated
และ MTT เหลือเชื่อ เอฟ
การแปล กรุณารอสักครู่..