The dPCR concept was conceived in 1992 by Sykes et al. using nested PCR. An important development occurred in 1995 with co-inventions by Brown at Cytonix and Silver at the National Institutes of Health of single-step quantitization and sequencing methods employing nano-scale arrays and localized clonal colonies using capillaries, gels, affinity surfaces/particles and immiscible fluid containments, resulting in a 1997 U. S. Patent (U. S. Patent 6,143,496) and subsequent divisional and continuation patents. Vogelstein and Kinzler further developed the concept by quantifying KRAS mutations in stool DNA from colorectal cancer patients. Digital PCR has been shown to be a promising surveillance tool for illnesses such as cancer. Significant additional developments have included using emulsion beads for digital PCR by Dressman and colleagues. Digital PCR has many other applications, including detection and quantitization of low-level pathogens, rare genetic sequences, gene expression in single cells, and the clonal amplification of nucleic acids (cPCR or clonal PCR) for the identification and sequencing of mixed nucleic acids samples or fragments. It has also proved useful for the analysis of heterogeneous methylation.
In 2006 Fluidigm introduced the first commercial system for digital PCR based on integrated fluidic circuits (chips) having integrated chambers and valves for partitioning samples. In March 2010, a patent was published for digital PCR based on emulsions.
Digital PCR has many potential applications, including the detection and quantification of low-level pathogens, rare genetic sequences, copy number variations, and relative gene expression in single cells. Clonal amplification enabled by single-step digital PCR is a key factor in reducing the time and cost of many of the "next-generation sequencing" methods and hence enabling personal genomics.