α-Synuclein protein aggregates are a major component of Lewy bodies, the intracytoplasmic inclusions found in dopaminergic neurons that are a defining characteristic of Parkinson's disease. Other “synucleopathies” include dementia with Lewy bodies and multisystem atrophy. In vitro, the formation of these deposits can be induced by a number of substances, including metal ions. Fish provide a useful model to study the long-term biological effects of metal ion exposure, but to date no studies have been reported concerning such exposures with respect to α-synuclein aggregation. Mature white sucker fish (Catostomus commersoni; aged 5–8 years) were sampled from two sites within the Red Lake area of Northwestern Ontario, a region highly contaminated by metal ions due to mining activity. Individual fish were characterized with respect to liver metal ion uptake and metallothionein levels. Central nervous system (CNS) tissues of fish from test sites representing high and low metal ion contamination were examined immunohistochemically using a polyclonal antibody recognising α-synuclein protein. We demonstrate here that the CNS of fish exposed to elevated metal ion environments had increased α-synuclein-like immunoreactive aggregates, potentially reflecting metal ion exposure leading to CNS toxicity. These findings demonstrate that fish may be an important new model for studying environmental risk factors and the pathology associated with Parkinson's disease.