The reason for which the computers are capable of performing complex operation is due to the interconnection of these logic gates. Logic gates are implemented by using transistors, diodes, relays, optics and molecules or even by several mechanical elements. Due to this reason logic gates can also be considered as electronic circuits. The logic gates can be build up in a wide variety forms such as large-scale integrated circuits (LSI), very large-scale integrated circuits (VLSI) and also in small-scale integrated circuits (SSI). Here the inputs and output of all the gates of integrated devices can be accessible and also the external connections are made available to them just like discrete logic gates.
Inputs and outputs of logic gates are in two levels termed as HIGH and LOW, or TRUE and FALSE, or ON and OFF, or simply 1 and 0. A table which list out the combination of input variables and the corresponding output variables is termed as “TRUTH TABLE”. It explains how the logic circuit output responds to various combinations of logic levels at the inputs. Here we are following level logic, in which the voltage levels are represented as logic 1 and logic 0. Level logic is of two types such as positive logic or negative logic. In the positive logic system, higher of the two voltage levels are represented as 1 and lower of the two voltage levels are represented as 0. But in the negative logic system, higher of the two voltage levels are represented as 0 and lower of the two voltage levels are represented as 1. While considering the transistor-transistor logic (TTL), the lower state is assumed to be zero volts (0V) and the higher state is considered as five volts positive (+5V).
The reason for which the computers are capable of performing complex operation is due to the interconnection of these logic gates. Logic gates are implemented by using transistors, diodes, relays, optics and molecules or even by several mechanical elements. Due to this reason logic gates can also be considered as electronic circuits. The logic gates can be build up in a wide variety forms such as large-scale integrated circuits (LSI), very large-scale integrated circuits (VLSI) and also in small-scale integrated circuits (SSI). Here the inputs and output of all the gates of integrated devices can be accessible and also the external connections are made available to them just like discrete logic gates.Inputs and outputs of logic gates are in two levels termed as HIGH and LOW, or TRUE and FALSE, or ON and OFF, or simply 1 and 0. A table which list out the combination of input variables and the corresponding output variables is termed as “TRUTH TABLE”. It explains how the logic circuit output responds to various combinations of logic levels at the inputs. Here we are following level logic, in which the voltage levels are represented as logic 1 and logic 0. Level logic is of two types such as positive logic or negative logic. In the positive logic system, higher of the two voltage levels are represented as 1 and lower of the two voltage levels are represented as 0. But in the negative logic system, higher of the two voltage levels are represented as 0 and lower of the two voltage levels are represented as 1. While considering the transistor-transistor logic (TTL), the lower state is assumed to be zero volts (0V) and the higher state is considered as five volts positive (+5V).
การแปล กรุณารอสักครู่..