But let's look at this in a little more detail. So this is the FreeSpeech ecosystem. We have the Free Speech representation on one side, and we have the FreeSpeech Engine, which generates English. Now if you think about it, FreeSpeech, I told you, is completely language-independent. It doesn't have any specific information in it which is about English. So everything that this system knows about English is actually encoded into the engine. That's a pretty interesting concept in itself. You've encoded an entire human language into a software program. But if you look at what's inside the engine, it's actually not very complicated. It's not very complicated code. And what's more interesting is the fact that the vast majority of the code in that engine is not really English-specific. And that gives this interesting idea. It might be very easy for us to actually create these engines in many, many different languages, in Hindi, in French, in German, in Swahili. And that gives another interesting idea. For example, supposing I was a writer, say, for a newspaper or for a magazine. I could create content in one language, FreeSpeech, and the person who's consuming that content, the person who's reading that particular information could choose any engine, and they could read it in their own mother tongue, in their native language. I mean, this is an incredibly attractive idea, especially for India. We have so many different languages. There's a song about India, and there's a description of the country as, it says, (in Sanskrit). That means "ever-smiling speaker of beautiful languages.