History and theory[edit]
Accuracy of Navigation Systems.svg
Early predecessors were the ground based DECCA, LORAN, GEE and Omega radio navigation systems, which used terrestrial longwave radio transmitters instead of satellites. These positioning systems broadcast a radio pulse from a known "master" location, followed by a pulse repeated from a number of "slave" stations. The delay between the reception of the master signal and the slave signals allowed the receiver to deduce the distance to each of the slaves, providing a fix.
The first satellite navigation system was Transit, a system deployed by the US military in the 1960s. Transit's operation was based on the Doppler effect: the satellites travelled on well-known paths and broadcast their signals on a well-known frequency. The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver. By monitoring this frequency shift over a short time interval, the receiver can determine its location to one side or the other of the satellite, and several such measurements combined with a precise knowledge of the satellite's orbit can fix a particular position.
Part of an orbiting satellite's broadcast included its precise orbital data. In order to ensure accuracy, the US Naval Observatory (USNO) continuously observed the precise orbits of these satellites. As a satellite's orbit deviated, the USNO would send the updated information to the satellite. Subsequent broadcasts from an updated satellite would contain the most recent accurate information about its orbit.
Modern systems are more direct. The satellite broadcasts a signal that contains orbital data (from which the position of the satellite can be calculated) and the precise time the signal was transmitted. The orbital data is transmitted in a data message that is superimposed on a code that serves as a timing reference. The satellite uses an atomic clock to maintain synchronization of all the satellites in the constellation. The receiver compares the time of broadcast encoded in the transmission of three (at sea level) or four different satellites, thereby measuring the time-of-flight to each satellite. Several such measurements can be made at the same time to different satellites, allowing a continual fix to be generated in real time using an adapted version of trilateration: see GNSS positioning calculation for details.
Each distance measurement, regardless of the system being used, places the receiver on a spherical shell at the measured distance from the broadcaster. By taking several such measurements and then looking for a point where they meet, a fix is generated. However, in the case of fast-moving receivers, the position of the signal moves as signals are received from several satellites. In addition, the radio signals slow slightly as they pass through the ionosphere, and this slowing varies with the receiver's angle to the satellite, because that changes the distance through the ionosphere. The basic computation thus attempts to find the shortest directed line tangent to four oblate spherical shells centred on four satellites. Satellite navigation receivers reduce errors by using combinations of signals from multiple satellites and multiple correlators, and then using techniques such as Kalman filtering to combine the noisy, partial, and constantly changing data into a single estimate for position, time, and velocity.
ประวัติและทฤษฎี [แก้]ความถูกต้องของ Systems.svg นำทางรุ่นก่อนก่อนถูกพื้นดินตาม DECCA, LORAN, GEE และโอเมก้าวิทยุระบบนำทาง ซึ่งใช้เครื่องส่งสัญญาณวิทยุจากภาคพื้นดิน longwave แทนดาวเทียม เหล่านี้วางระบบออกอากาศวิทยุชีพจรจากตำแหน่ง "หลัก" รู้จัก ตาม ด้วยชีพจรซ้ำจากหมายเลขของสถานี "ทาส" การหน่วงเวลาระหว่างการรับสัญญาณหลักและสัญญาณทาสรับคาดเดาระยะห่างแต่ละทาส การแก้ไขให้ได้ระบบนำทางดาวเทียมแรกถูกขนส่ง ระบบการจัดวาง โดยทหารในปี 1960 สหรัฐอเมริกา ดำเนินการขนส่งของตามดอปเปลอร์: ดาวเทียมเดินทางบนเส้นทางที่รู้จักกันดี และถ่ายทอดสัญญาณในความถี่ที่รู้จักกัน ความถี่ที่ได้รับจะแตกต่างเล็กน้อยจากความถี่ออกอากาศเนื่องจากการเคลื่อนที่ของดาวเทียมเกี่ยวกับรับสัญญาณ โดยการตรวจสอบการเปลี่ยนแปลงความถี่นี้ผ่านช่วงเวลาสั้น ตัวรับสัญญาณสามารถกำหนดตำแหน่งไปด้านใดด้านหนึ่ง หรืออื่น ๆ ของดาวเทียม และหลายเช่นวัดที่รวมกับความรู้ที่แม่นยำของวงโคจรของดาวเทียมสามารถแก้ไขตำแหน่งหนึ่ง ๆPart of an orbiting satellite's broadcast included its precise orbital data. In order to ensure accuracy, the US Naval Observatory (USNO) continuously observed the precise orbits of these satellites. As a satellite's orbit deviated, the USNO would send the updated information to the satellite. Subsequent broadcasts from an updated satellite would contain the most recent accurate information about its orbit.Modern systems are more direct. The satellite broadcasts a signal that contains orbital data (from which the position of the satellite can be calculated) and the precise time the signal was transmitted. The orbital data is transmitted in a data message that is superimposed on a code that serves as a timing reference. The satellite uses an atomic clock to maintain synchronization of all the satellites in the constellation. The receiver compares the time of broadcast encoded in the transmission of three (at sea level) or four different satellites, thereby measuring the time-of-flight to each satellite. Several such measurements can be made at the same time to different satellites, allowing a continual fix to be generated in real time using an adapted version of trilateration: see GNSS positioning calculation for details.Each distance measurement, regardless of the system being used, places the receiver on a spherical shell at the measured distance from the broadcaster. By taking several such measurements and then looking for a point where they meet, a fix is generated. However, in the case of fast-moving receivers, the position of the signal moves as signals are received from several satellites. In addition, the radio signals slow slightly as they pass through the ionosphere, and this slowing varies with the receiver's angle to the satellite, because that changes the distance through the ionosphere. The basic computation thus attempts to find the shortest directed line tangent to four oblate spherical shells centred on four satellites. Satellite navigation receivers reduce errors by using combinations of signals from multiple satellites and multiple correlators, and then using techniques such as Kalman filtering to combine the noisy, partial, and constantly changing data into a single estimate for position, time, and velocity.
การแปล กรุณารอสักครู่..
