Indeed, this disassembly step correlates with the release of several peripheral proteins from Golgi membranes to carry out specific functions during mitosis. For instance, clathrin dissociates from the Golgi complex and from endocytic vesicles during mitosis and localizes to the spindle pole where it stabilizes mitotic spindle fibers involved in chromosome segregation (Royle et al., 2005). The small GTPase, Rab6A, is also released from the Golgi during mitotic Golgi fragmentation (Miserey-Lenkei et al., 2006). If this dynamic behavior of Rab6A is inhibited, cells are no longer able to progress through mitosis and are blocked in metaphase through activation of the spindle checkpoint. Another example is the Golgi-associated protein ACBD3, whose release and cytoplasmic dispersal during mitotic Golgi breakdown is necessary for the activation of Numb in the regulation of asymmetric cell division (Zhou et al., 2007). Thus, in addition to facilitating the partitioning of Golgi membranes into the daughter cells, Golgi fragmentation may provide a unique mechanism for the regulation of signaling pathways that involve Golgi-associated components.