Various methods for the synthesis of copper nanoparticles employing chemical, physical and biological techniques considering bottom-up and top-down methods synthesis have been studied. The properties of copper nanoparticles depend largely on their synthesis procedures. The results from various investigations performed by different scientists using these methods have been summarized. The applications, characterization techniques, advantages and disadvantages of each synthesis method are also the point of discussion. A detailed study of the results reveals that chemical reduction methods are most suitable for the synthesis of copper nanoparticles. Chemical reduction of copper salts using ascorbic acid (Vitamin C) is a new and green approach in which ascorbic acid is used both as the reduction and capping agent. This approach is the most effective and is also economical. Wide applications have been reported in various fields, including heat transfer, catalyst production, electronics and medicine at a commercial scale. This process is nontoxic, environment-friendly and economical. The applications, characterization techniques, advantages and disadvantages of each synthesis method have been presented.