materials, production of cracks in the lignocellulosic fibres, and exposure of cellulosic materials by creating
pores during pretreatment [24]. The combined chemical pretreatments carried out in the present work was able
to remove lignin, thus creating pores that enhanced surface contact with the chemicals. This prompted an easier
release of sugars from the cellulose of EFB. Initially, without chemical treatment, the EFB had a relatively rigid
structure and rough surface (Fig. 2a). However, physical changes occurred during dilute acid pretreatment with
the appearance of white particles (about 10 μm in size) on EFB’s surfaces (Fig. 2b). The EDX analysis of these
particles evidenced the presence of silica (SiO2) (Fig. 3). After alkaline pretreatment, the exposed silica and
other impurities were easily wiped off leaving some empty cavities on the fibre surfaces (Fig. 2c). The
pretreatment had successfully disrupted the silicified waxy surface, hence the silicon component was disposed
and removed successively. The finding corresponded well with a previous study that reported NaOHpretreatment
process could remove silicon from 7.07% to 0.86% [25]. As silica deposition in biomass cell walls
acts as another physical barrier to enzymatic attack [26], an effective removal of the silica during pretreatment
can enhance the digestibility of the EFB.
A combined acid and alkaline pretreatment is able to enhance the exposure of cellulose component in the
EFB fiber, thus leading to an improved accessibility of the cellulose for enzymatic hydrolysis. NaOH acts as an
intra crystalline swelling agent i.e. it penetrates and swells both the accessible amorphous and crystalline region
of cellulose [27], hence an assisted efficient EFB pretreatment process takes place. In this study, the high
temperature and pressure applied during the acid-pretreatment process exploded the fibre components, making
them accessible to high temperature NaOH-pretreatment. This had resulted in an effective removal of
hemicelluloses and lignin, respectively from the two processes leading to a smoother surface of the treated fibre
as compared to the untreated EFB (Fig. 2b and 2c). The pretreatment had successfully broken down the linkages
materials, production of cracks in the lignocellulosic fibres, and exposure of cellulosic materials by creatingpores during pretreatment [24]. The combined chemical pretreatments carried out in the present work was ableto remove lignin, thus creating pores that enhanced surface contact with the chemicals. This prompted an easierrelease of sugars from the cellulose of EFB. Initially, without chemical treatment, the EFB had a relatively rigidstructure and rough surface (Fig. 2a). However, physical changes occurred during dilute acid pretreatment withthe appearance of white particles (about 10 μm in size) on EFB’s surfaces (Fig. 2b). The EDX analysis of theseparticles evidenced the presence of silica (SiO2) (Fig. 3). After alkaline pretreatment, the exposed silica andother impurities were easily wiped off leaving some empty cavities on the fibre surfaces (Fig. 2c). Thepretreatment had successfully disrupted the silicified waxy surface, hence the silicon component was disposedand removed successively. The finding corresponded well with a previous study that reported NaOHpretreatmentprocess could remove silicon from 7.07% to 0.86% [25]. As silica deposition in biomass cell wallsacts as another physical barrier to enzymatic attack [26], an effective removal of the silica during pretreatmentcan enhance the digestibility of the EFB.A combined acid and alkaline pretreatment is able to enhance the exposure of cellulose component in theEFB ไฟเบอร์ จึง นำไปสู่การเข้าถึงการปรับปรุงของเซลลูโลสสำหรับไฮโตรไลซ์เอนไซม์ในระบบ NaOH ทำหน้าที่เป็นตัวภายในผลึกบวมแทนเช่นมันแทรกซึม และ swells ทั้งสองเข้าไป และผลึกภูมิภาคของเซลลูโลส [27] ดังนั้นความช่วยเหลือมีประสิทธิภาพ EFB pretreatment กระบวนการเกิดขึ้น ในการศึกษานี้ สูงอุณหภูมิและความดันที่ใช้ในระหว่างกระบวนการ pretreatment กรดกระจายส่วนประกอบเส้นใย การทำพวกเขาเข้าถึง NaOH pretreatment ที่อุณหภูมิสูง ได้ส่งผลให้มีประสิทธิภาพการกำจัดhemicelluloses และ lignin จากกระบวนการสองนำไปสู่พื้นผิวเรียบของเส้นใยบำบัดตามลำดับเมื่อเทียบกับ EFB ไม่ถูกรักษา (Fig. 2b และ 2 c) Pretreatment ที่สำเร็จได้เสียลงลิงค์
การแปล กรุณารอสักครู่..
