Protein induced protein turnover
There is abundant evidence that dietary protein stimulates protein breakdown and re-synthesis. In particular, branched chain amino acids, and especially leucine, are documented to act as nutritional signals acting via both the insulin and mTOR signaling pathways [16-18]. On the macroscopic level, the energetic cost of protein turnover is demonstrable as excess heat generated during a high protein meal. Thermogenesis (thermogenic effect of feeding; old name: specific dynamic action) has been defined as the extra heat generated during a meal due to digestion or metabolism. Johnston et al [19] compared the energy expended during 9 hour intravenous feedings of a high protein meal, vs. an isocaloric high carbohydrate meal; both contrasted with a 9 hour fast. The protein meal, with 70% of its caloric value due to protein, had significantly greater thermogenesis than the high carbohydrate meal (70% of calories from carbohydrate). These data have been reproduced in numerous studies [19-22]. The overall energy costs of protein turnover and synthesis have been estimated in various animal species, including man, and tabulated by Vernon Young ([23]), based on data from other investigators [24-26]. Despite the substantial experimental difficulties involved, the cost of protein synthesis clusters at around 4–5 kcal/gram in 8 species of birds, marsupials and mammals, including man. The high energetic cost is understandable in view of the multiple ATP-requiring processes involved. The cost of protein turnover can reduce efficiency from 33% to 27%, merely in the formation and hydrolysis of a single peptide bond (requiring 4 ATP's per bond formed: Table 1). In addition, protein processes that are ATP-dependent include formation of the ribosomal initiation complex, translation and folding of the protein, and protein degradation (both ubiquitin-dependent and -independent pathways) [23]. The energy costs of protein turnover could therefore account for a metabolic advantage in high protein diets, independent of carbohydrate content. This mechanism may also contribute to inefficiency in low carbohydrate diets, often high in protein.
Protein induced protein turnover
There is abundant evidence that dietary protein stimulates protein breakdown and re-synthesis. In particular, branched chain amino acids, and especially leucine, are documented to act as nutritional signals acting via both the insulin and mTOR signaling pathways [16-18]. On the macroscopic level, the energetic cost of protein turnover is demonstrable as excess heat generated during a high protein meal. Thermogenesis (thermogenic effect of feeding; old name: specific dynamic action) has been defined as the extra heat generated during a meal due to digestion or metabolism. Johnston et al [19] compared the energy expended during 9 hour intravenous feedings of a high protein meal, vs. an isocaloric high carbohydrate meal; both contrasted with a 9 hour fast. The protein meal, with 70% of its caloric value due to protein, had significantly greater thermogenesis than the high carbohydrate meal (70% of calories from carbohydrate). These data have been reproduced in numerous studies [19-22]. The overall energy costs of protein turnover and synthesis have been estimated in various animal species, including man, and tabulated by Vernon Young ([23]), based on data from other investigators [24-26]. Despite the substantial experimental difficulties involved, the cost of protein synthesis clusters at around 4–5 kcal/gram in 8 species of birds, marsupials and mammals, including man. The high energetic cost is understandable in view of the multiple ATP-requiring processes involved. The cost of protein turnover can reduce efficiency from 33% to 27%, merely in the formation and hydrolysis of a single peptide bond (requiring 4 ATP's per bond formed: Table 1). In addition, protein processes that are ATP-dependent include formation of the ribosomal initiation complex, translation and folding of the protein, and protein degradation (both ubiquitin-dependent and -independent pathways) [23]. The energy costs of protein turnover could therefore account for a metabolic advantage in high protein diets, independent of carbohydrate content. This mechanism may also contribute to inefficiency in low carbohydrate diets, often high in protein.
การแปล กรุณารอสักครู่..
