Rainfall is considered as one of the major components of the hydrological process; it takes
significant part in evaluating drought and flooding events. Therefore, it is important to have an
accurate model for rainfall prediction. Recently, several data-driven modeling approaches have
been investigated to perform such forecasting tasks as multilayer perceptron neural networks
(MLP-NN). In fact, the rainfall time series modeling (SARIMA) involvesimportant temporal
dimensions. In order to evaluate the incomes of both models, statistical parameters were used to
make the comparison between the two models. These parameters include the Root Mean Square
Error RMSE, Mean Absolute Error MAE, Coefficient Of Correlation CC and BIAS. Two-Third
of the data was used for training the model and One-third for testing.