After several papers predicting the structure, researchers observed the first experimental evidence of borospherene, a box-like boron fullerene with the formula B40.17
Unlike carbon, boron can’t form a perfect football like Buckminsterfullerene (C60) because it only has three electrons in its outer shell, so after forming three bonds it has no free electrons remaining to form the delocalised π-network essential to the stability of C60. But various theoretical studies have showed that other configurations may be stable.
Lai-Sheng Wang at Brown University, US, calculated that 40 borons could form a box-like fullerene isomer with both hexagonal and heptagonal holes. Their simulations suggested that gaseous B40 would exist as a mixture of two forms: a quasiplanar structure and the fullerene. The team vaporised bulk boron with a laser and separated the molecular clusters using a mass spectrometer. They calculated the predicted photoelectron spectra of both quasiplanar and the fullerene B40- isomers and compared these with their measured spectrum. The measured spectrum did not match either calculated spectrum, but matched a combination of the two. This indicates, consistent with their predictions, a mixture of the quasiplanar isomer and borospherene.
After several papers predicting the structure, researchers observed the first experimental evidence of borospherene, a box-like boron fullerene with the formula B40.17Unlike carbon, boron can’t form a perfect football like Buckminsterfullerene (C60) because it only has three electrons in its outer shell, so after forming three bonds it has no free electrons remaining to form the delocalised π-network essential to the stability of C60. But various theoretical studies have showed that other configurations may be stable.Lai-Sheng Wang at Brown University, US, calculated that 40 borons could form a box-like fullerene isomer with both hexagonal and heptagonal holes. Their simulations suggested that gaseous B40 would exist as a mixture of two forms: a quasiplanar structure and the fullerene. The team vaporised bulk boron with a laser and separated the molecular clusters using a mass spectrometer. They calculated the predicted photoelectron spectra of both quasiplanar and the fullerene B40- isomers and compared these with their measured spectrum. The measured spectrum did not match either calculated spectrum, but matched a combination of the two. This indicates, consistent with their predictions, a mixture of the quasiplanar isomer and borospherene.
การแปล กรุณารอสักครู่..
