A new observable from space: SIF (Solar-Induced chlorophyll Fluorescence)
2014: Remote sensing of terrestrial vegetation fluorescence from space is of great interest because it can potentially provide global coverage of the functional status of vegetation. For example, fluorescence observations may provide a means to detect vegetation stress before chlorophyll reductions take place. Although there have been many measurements of fluorescence from ground- and airborne-based instruments, there has been scant information available from satellites. 21)
Photosynthesis is the conversion by living organisms of light energy into chemical energy and fixation of atmospheric carbon dioxide into sugars; it is the key process mediating 90% of carbon and water fluxes in the coupled biosphere-atmosphere system.
Until about 2010, most of the information that has been acquired by remote sensing of the Earth's surface about vegetation conditions has come from reflected light in the solar domain. There is, however, one additional source of information about vegetation productivity in the optical and near-infrared wavelength range that has not been globally exploited by satellite observations. This source of information is related to the emission of fluorescence from the chlorophyll of assimilating leaves; part of the energy absorbed by chlorophyll cannot be used for carbon fixation and is thus re-emitted as fluorescence at longer wavelengths (lower energy) with respect to the absorption.
The fluorescence signal originates from the core complexes of the photosynthetic machinery where energy conversion of APAR (Absorbed Photosynthetically Active Radiation) occurs. Because the photosynthetic apparatus is an organized structure, the emission spectrum of fluorescence that originates from it is well known; it occurs as a convolution of broadband emission from 650 to 800 nm with two peaks in the VNIR (Visible and Near-Infrared) at 685 and 740 nm, respectively, as shown in Figure .
GOSAT_Auto19
Figure 10: Simulated solar-induced fluorescence as a function of the emission wavelength with locations of oxygen absorption bands and several solar Fraunhofer lines including the KI line used here (image credit: NASA, NIES)
The measurement of SIF (Solar-Induced chlorophyll Fluorescence) from space is challenging, because its signal (typically 1–5% in NIR) must be differentiated from the much larger reflectance signal. SIF has been detected from ground- and airborne-based instrumentation by exploiting the fact that SIF is a proportionally larger fraction of the total radiance within dark lines and bands of the atmospheric spectrum. These dark features include both very narrow solar Fraunhofer lines and wider telluric absorption features such as the O2-B band at 687 nm and the O2-A band near 760 nm.
The only spaceborne detection of SIF to date was achieved by Guanter et al. (2007) with the MERIS (MEdium Resolution Imaging Spectrometer) on Envisat. MERIS has two channels near the O2-A band, one near the peak absorption at 760.6 nm with a 3.75 nm bandwidth, and one used as a reference band in the nearby continuum at 753.8 nm. MERIS makes measurements at a moderate spatial scale for land studies (better than 300 m/pixel in its Full Resolution mode). 22)
The GOSAT research team (Ref. 21) used high-spectral resolution data from the TANSO-FTS instrument on GOSAT near the 770 nm Fraunhofer line to derive chlorophyll fluorescence and related parameters such as the fluorescence yield at that wavelength. TANSO-FTS measures backscattered solar radiation in three bands centered at 0.76, 1.6, and 2.0 µm in two perpendicular polarizations (referred to as P and S). It has a nadir ground footprint of 10.5 km diameter. Chlorophyll fluorescence can be measured within band 1 that extends from approximately 758-775 nm and encompasses the O2-A band. The primary function of the O2-A band for GOSAT is to account for the effects of cloud and aerosol within the CO2 and CH4 bands.
The research team performed monthly mean scaled SIF measurements with TANS-FTS during the growing season of 2009 in July and December on a global scale. The expected seasonal variation is definitively shown, namely, higher Northern Hemisphere terrestrial activity in July versus higher activity in the Southern Hemisphere in December.
There is indeed evidence that high-resolution spectrometers enable new avenues in global carbon cycle research, including the first accurate retrievals of chlorophyll fluorescence from space as an indicator of photosynthetic activity. 23)
During photosynthesis, part of the solar radiation absorbed by chlorophyll is re-emitted at longer wavelengths (fluorescence). Using new, high-resolution spectrometers, this chlorophyll fluorescence from space now be measured, which can, in turn, be used to quantify photosynthetic activity and efficiency globally. Such measurements are important to reduce uncertainties in the global carbon cycle. Indeed, the ability to control the Earth's carbon budget in a warming climate depends critically on knowing where, when, and how CO2 is exchanged between the land and atmosphere. The GPP (Gross Primary Production), that is the gross uptake of atmospheric CO2 through photosynthesis, constitutes the largest flux component in the global carbon budget. However, considerable uncertainties remain in GPP estimates and its seasonality.
The OCO-2 (Orbiting Carbon Observatory-2) mission of NASA will be launched in July 2014. The spectrometer aboard OCO-2 will make precise measurements of carbon dioxide in the atmosphere, recording 24 observations/s versus GOSAT's single observation every four seconds, resulting in almost 100 times more observations of both carbon dioxide and fluorescence than GOSAT. It is expected that the OCO-2's fluorescence data will extend the GOSAT time series and allow the project to observe large-scale changes to photosynthesis in a new way. 24)