sodium ions in sweat in real-time has been designed and
developed [36]. Wearable micromachined sensors can be very
powerful in providing accurate biomechanical analysis under
ambulatory conditions [37]. The possibility of development
of wearable skins that can monitor, sense, and interact with
the world around us in a perpetual way, thus significantly
enhancing ambient intelligence and quality of life has been
discussed [38]. It is expected that the potential applications
of wearable technologies will include the early diagnosis of
diseases such as congestive heart failure, the prevention of
chronic conditions such as diabetes, improved clinical management
of neurodegenerative conditions such as Parkinson’s
disease, and the ability to promptly respond to emergency
situations such as seizures in patients with epilepsy and cardiac
arrest in subjects undergoing cardiovascular monitoring [39].