In June 2011, IBM researchers announced the design of a high-speed graphene circuit. In 2010, IBM produced a working transistor with graphene - a great achievement since graphene is not a natural semiconductor. Despite the technical challenges, this first working graphene transistor operated at twice the speed of a comparable silicon transistor.
A working transistor means nothing unless it is integrated into a circuit, implying that a number of transistors are linked to perform a task. In this instance, IBM scientists constructed a broadband radio frequency mixer that is used in radio applications to process signals at a range of frequencies. It is a standard IC component and this achievement shows that graphene transistors can be used effectively in more complex systems.
IBM overcame a number of challenges to make this possible, including protecting the ultra-thin graphene layer during the etching process with electron beam lithography, which is a standard process for creating nanoscale features in silicon-based electronics. Though this is in the prototype stage, if IBM is able to commercially produce graphene transistors, it will change the face of electronics.
In June 2011, IBM researchers announced the design of a high-speed graphene circuit. In 2010, IBM produced a working transistor with graphene - a great achievement since graphene is not a natural semiconductor. Despite the technical challenges, this first working graphene transistor operated at twice the speed of a comparable silicon transistor.A working transistor means nothing unless it is integrated into a circuit, implying that a number of transistors are linked to perform a task. In this instance, IBM scientists constructed a broadband radio frequency mixer that is used in radio applications to process signals at a range of frequencies. It is a standard IC component and this achievement shows that graphene transistors can be used effectively in more complex systems.IBM overcame a number of challenges to make this possible, including protecting the ultra-thin graphene layer during the etching process with electron beam lithography, which is a standard process for creating nanoscale features in silicon-based electronics. Though this is in the prototype stage, if IBM is able to commercially produce graphene transistors, it will change the face of electronics.
การแปล กรุณารอสักครู่..
