3. Results and discussion
3.1. Flow structure and gas holdup
Images of bubbly flows at H0 = 1.5 are shown in Fig. 5(a). The superficial gas velocity increases from the left to the right figures. At JG = 0.025 m/s, bubbles generated from the diffuser plate were likely to immediately accumulate toward the column center region. The bubble number density was therefore relatively higher in the center region than in the near wall region, as reported in our previous study [19]. The high bubble number density region, in other words, the high gas holdup region, consisting of bubble swarms fluctuated in time. Due to the strong liquid updraft by the bubble swarms in the center region, column-scale vortical structures were formed. Increasing JG made the bubble number density and the bubble size higher and larger, respectively. At JG = 0.10–0.15 m/s, many bubbles of several-centimeter sizes were formed here and there. Such bubbles were not observed in the vicinity of the diffuser plate, and therefore, they were formed by bubble coalescence.
Further increase in JG caused a change in the flow structure, i.e. huge bubbles of the column-width scale were formed for JG P 0.20 m/s. The frequency of huge bubble formation at JG = 0.20 m/s was however low compared with the higher JG cases. The flow structure in the time duration without the presence of huge bubbles was close to that at JG = 0.15 m/s. Hence, the flow at JG = 0.20 m/s was in a transitional regime. Most of huge bubbles were formed at z/DH $ 2, where z is the height measured from the bottom of the column. This implies that huge bubbles required a certain time duration to grow. Passages of huge bubbles strongly agitated the flow over the whole column cross section. Though both of the above-mentioned flows are heterogeneous, the former and latter are referred to as regimes 1 and 2, respectively, in the following discussion.
Fig. 5(b) and (c) shows flows at higher H0. Being similar to the flows in Fig. 5(a), the flows can also be classified as either regime 1 or regime 2: the flows for JG 6 0.15 m/s are in regime 1 and those for JG P 0.25 m/s are in regime 2 because of the presence of huge bubbles. Hence the flow regime mainly depends on JG and the effect of H0 on it is not large. The formation of huge bubbles in regime 2 was also observed at z/DH $ 2. They did not break up into small bubbles and rose up to the free surface. The huge bubbles possessed strong wake entrainment effects, i.e., many bubbles entrained into their wake regions were drifted upward.
Total gas holdups are shown in Fig. 6. The aG data are also given in Appendix. The aG monotonously increases with JG and this ten- dency is similar to that in the so-called pure heterogeneous regime [20]. The gradient daG/dJG evaluated by using a backward differ- ence scheme is shown in Fig. 7. It decreases with increasing JG for JG < 0.2 m/s, whereas it is almost constant for JG > 0.2 m/s. Since
3. ผล และการอภิปราย3.1. การไหลของก๊าซและโครงสร้าง holdupภาพมอบกระแสที่ H0 = 1.5 จะแสดงอยู่ในรูป 5(a) ความเร็วก๊าซเพียงผิวเผินจากซ้ายเพิ่มขึ้นตัวเลขที่เหมาะสม ที่ JG = 0.025 m/s ฟองอากาศที่สร้างขึ้นจากแผ่น diffuser มีแนวโน้มที่จะสะสมทันทีไปทางภูมิภาคศูนย์คอลัมน์ ความหนาแน่นหมายเลขฟองได้จึงค่อนข้างสูงในภูมิภาคศูนย์กว่าในภูมิภาคใกล้ผนัง เป็นรายงานในการศึกษาของเราก่อนหน้านี้ [19] ในฟองสูงเลขความหนาแน่นของภูมิภาค ในคำอื่น ๆ ก๊าซสูง holdup ภูมิภาค ประกอบด้วยฟอง swarms ผันผวนในเวลา โครงสร้างคอลัมน์ขนาด vortical ได้เกิดขึ้นเนื่องจาก updraft เหลวแข็งแกร่งโดย swarms ฟองในภูมิภาคศูนย์ เพิ่ม JG ทำความหนาแน่นหมายเลขฟองและฟองขนาดสูง และขนาด ใหญ่ ตามลำดับ ที่ JG = 0.10 – 0.15 m/s ฟองหลายขนาดหลายเซนติเมตรเกิดที่นี่และมีการ ฟองอากาศดังกล่าวถูกตั้งข้อสังเกตไม่ใกล้แผ่น diffuser และ ดังนั้น พวกเขาจึงเกิดฟอง coalescenceFurther increase in JG caused a change in the flow structure, i.e. huge bubbles of the column-width scale were formed for JG P 0.20 m/s. The frequency of huge bubble formation at JG = 0.20 m/s was however low compared with the higher JG cases. The flow structure in the time duration without the presence of huge bubbles was close to that at JG = 0.15 m/s. Hence, the flow at JG = 0.20 m/s was in a transitional regime. Most of huge bubbles were formed at z/DH $ 2, where z is the height measured from the bottom of the column. This implies that huge bubbles required a certain time duration to grow. Passages of huge bubbles strongly agitated the flow over the whole column cross section. Though both of the above-mentioned flows are heterogeneous, the former and latter are referred to as regimes 1 and 2, respectively, in the following discussion.Fig. 5(b) and (c) shows flows at higher H0. Being similar to the flows in Fig. 5(a), the flows can also be classified as either regime 1 or regime 2: the flows for JG 6 0.15 m/s are in regime 1 and those for JG P 0.25 m/s are in regime 2 because of the presence of huge bubbles. Hence the flow regime mainly depends on JG and the effect of H0 on it is not large. The formation of huge bubbles in regime 2 was also observed at z/DH $ 2. They did not break up into small bubbles and rose up to the free surface. The huge bubbles possessed strong wake entrainment effects, i.e., many bubbles entrained into their wake regions were drifted upward.Holdups ก๊าซทั้งหมดจะแสดงในรูปที่ 6 นอกจากนี้ยังได้ข้อมูล aG ในภาคผนวก Monotonously aG เพิ่มขึ้นกับ JG และสิบ dency นี้จะคล้ายกับในระบบการเรียกว่าบริสุทธิ์ heterogeneous ปกครอง [20] การไล่ระดับสี daG/dJG ประเมิน โดยใช้โครงร่างย้อนหลังแตก ence จะแสดงในรูป 7 มันลดลงเมื่อเพิ่ม JG สำหรับ JG < 0.2 m/s ในขณะที่เกือบคงที่สำหรับจี > 0.2 m/s ได้ตั้งแต่
การแปล กรุณารอสักครู่..
