In [Cortez and Morais, 2007], the output 'area' was first transformed with a ln(x+1) function.
Then, several Data Mining methods were applied. After fitting the models, the outputs were
post-processed with the inverse of the ln(x+1) transform. Four different input setups were
used. The experiments were conducted using a 10-fold (cross-validation) x 30 runs. Two
regression metrics were measured: MAD and RMSE. A Gaussian support vector machine (SVM) fed
with only 4 direct weather conditions (temp, RH, wind and rain) obtained the best MAD value:
12.71 +- 0.01 (mean and confidence interval within 95% using a t-student distribution). The
best RMSE was attained by the naive mean predictor. An analysis to the regression error curve
(REC) shows that the SVM model predicts more examples within a lower admitted error. In effect,
the SVM model predicts better small fires, which are the majority.