Coronal plane knee valgus torques and trunk displacement both predict ACL injury risk in female athletes. Valgus torques predicted ACL injury risk with 78 percent sensitivity and 73 percent specificity. Trunk displacement predicted risk of knee, knee ligament, and ACL injuries with high sensitivity and specificity in female, but not male, athletes. A logistic regression model that incorporated lateral trunk motion predicted ACL injury risk in female athletes with 83 percent sensitivity and 76 percent specificity, but did not predict knee or ACL injury risk in male athletes.
The mechanism of ACL injury may differ in female and male athletes, especially with respect to the dynamic positioning of the knee, because female athletes demonstrate greater valgus collapse of the lower extremity, primarily in the coronal plane. The mechanism of noncontact ACL injuries as observed on video has several common components in female athletes: high knee abduction, lateral trunk motion with the body shifted over one leg; the plantar surface of the foot fixed flat on the playing surface and displaced away from the trunk; and low knee flexion. Unanticipated disturbance in the motion of the trunk is another common component.
Deficits in neuromuscular control of the trunk may contribute to knee joint instability and injury. Landing and cutting require high levels of neuromuscular control to maintain stability and performance. Dynamic stability of the knee depends on accurate sensory input and appropriate motor responses to rapid changes in body position during cutting and landing.
Coronal plane knee valgus torques and trunk displacement both predict ACL injury risk in female athletes. Valgus torques predicted ACL injury risk with 78 percent sensitivity and 73 percent specificity. Trunk displacement predicted risk of knee, knee ligament, and ACL injuries with high sensitivity and specificity in female, but not male, athletes. A logistic regression model that incorporated lateral trunk motion predicted ACL injury risk in female athletes with 83 percent sensitivity and 76 percent specificity, but did not predict knee or ACL injury risk in male athletes.The mechanism of ACL injury may differ in female and male athletes, especially with respect to the dynamic positioning of the knee, because female athletes demonstrate greater valgus collapse of the lower extremity, primarily in the coronal plane. The mechanism of noncontact ACL injuries as observed on video has several common components in female athletes: high knee abduction, lateral trunk motion with the body shifted over one leg; the plantar surface of the foot fixed flat on the playing surface and displaced away from the trunk; and low knee flexion. Unanticipated disturbance in the motion of the trunk is another common component.Deficits in neuromuscular control of the trunk may contribute to knee joint instability and injury. Landing and cutting require high levels of neuromuscular control to maintain stability and performance. Dynamic stability of the knee depends on accurate sensory input and appropriate motor responses to rapid changes in body position during cutting and landing.
การแปล กรุณารอสักครู่..
