The existence of black holes is a direct prediction of general relativity. They may arise from the gravitational collapse of matters and present event horizons which surround a singularity. More-over, they may display themselves like thermodynamic systems due to the existence of Hawking radiation and the entropy. In fact, these results are obtained by a semi-classical approach which treats gravity as a classical theory while quantizing the matter fields[1]. The semi-classical approach implies that Schwarzschild black hole will eventually evaporate away via Hawking radiation, until its mass approaches zero with an explosion. This result is questionable because quantum gravitational effects cannot be ig-nored at very small scales. In addition, there is another problem that the complete evaporation of black hole will lead to the famous “information paradox”. Although, until now, a complete theory of quantum gravity is not at hand, there are several different methods to derive the corrections to the semi-classical Hawking temper-nature and the Bekenstein–Hawking entropy, such as the general-ized uncertainty principle, noncommutative black holes, tunneling methods, back-reaction methods, asymptotic safety(AS), etc.
In this paper we concentrate on the asymptotic safety sce-nario for quantum gravity put forward by Weinberg[2], which is based on a nontrivial fixed point of the underlying renormalization group(RG) flow for gravity. Instead of the traditional perturbative renormalization, this scenario takes nonperturbative calculations to eliminate the divergencies in quantum field theory. This intrigu-ing picture implies a nonperturbative ultraviolet completion for gravity, where the metric fields remain the fundamental degrees of freedom. Most importantly, the low energy regime of classi-cal general relativity is linked with the high energy regime by a well-defined, finite, renormalizationgroup trajectory. There are several excellent reviews on the topic of asymptotic safety in quan-tum gravity [3–5]. By replacing Newtonian coupling constant with a “running” coupling, Bonanno and Reuter[6]firstly derived the renormalization group improved black hole metrics. It is shown that the temperature and entropy of the improved black hole will be corrected by some additional terms. In[7], the authors find a spherically symmetric vacuum solution to field equation derived from the AS gravity with higher derivative terms. Similarly, ther-modynamic quantities of the black hole solution are also modified due to the inclusion of quantum gravitational corrections to the dynamics of spacetime.
In this letter, we will study the thermodynamics and the phase transition of the AS improved black hole derived in[7]in order to explore the possible ultimate fate of an evaporating black hole. Phase transition of black holes are firstly studied by Davies[8], who insists that the phase transition should turn up at the point where the heat capacities diverge. This characteris-tic is also present in ordinary thermodynamic systems which ex-hibits the second order phase transition. Subsequently, Hawking and Page[9]studied the thermodynamic phase transition in AdS space. Many researches on this topic from different perspectives have been carried out [10–24].
The paper is arranged as follows: we first introduce the AS gravity model with higher derivative terms and give the quantum-corrected vacuum solutions in Section2. The corrected metric will lead to corrected thermodynamic quantities. In Section3, we will calculate the temperature, entropy, energy and heat capacity. In Section4, we study the thermodynamic curvature using the ge-ometrothermodynamics. In Section5, we discuss the phase transi-tion of the AS improved black hole by putting it into a cavity. We will make some concluding remarks in Section6.
The existence of black holes is a direct prediction of general relativity. They may arise from the gravitational collapse of matters and present event horizons which surround a singularity. More-over, they may display themselves like thermodynamic systems due to the existence of Hawking radiation and the entropy. In fact, these results are obtained by a semi-classical approach which treats gravity as a classical theory while quantizing the matter fields[1]. The semi-classical approach implies that Schwarzschild black hole will eventually evaporate away via Hawking radiation, until its mass approaches zero with an explosion. This result is questionable because quantum gravitational effects cannot be ig-nored at very small scales. In addition, there is another problem that the complete evaporation of black hole will lead to the famous “information paradox”. Although, until now, a complete theory of quantum gravity is not at hand, there are several different methods to derive the corrections to the semi-classical Hawking temper-nature and the Bekenstein–Hawking entropy, such as the general-ized uncertainty principle, noncommutative black holes, tunneling methods, back-reaction methods, asymptotic safety(AS), etc.
In this paper we concentrate on the asymptotic safety sce-nario for quantum gravity put forward by Weinberg[2], which is based on a nontrivial fixed point of the underlying renormalization group(RG) flow for gravity. Instead of the traditional perturbative renormalization, this scenario takes nonperturbative calculations to eliminate the divergencies in quantum field theory. This intrigu-ing picture implies a nonperturbative ultraviolet completion for gravity, where the metric fields remain the fundamental degrees of freedom. Most importantly, the low energy regime of classi-cal general relativity is linked with the high energy regime by a well-defined, finite, renormalizationgroup trajectory. There are several excellent reviews on the topic of asymptotic safety in quan-tum gravity [3–5]. By replacing Newtonian coupling constant with a “running” coupling, Bonanno and Reuter[6]firstly derived the renormalization group improved black hole metrics. It is shown that the temperature and entropy of the improved black hole will be corrected by some additional terms. In[7], the authors find a spherically symmetric vacuum solution to field equation derived from the AS gravity with higher derivative terms. Similarly, ther-modynamic quantities of the black hole solution are also modified due to the inclusion of quantum gravitational corrections to the dynamics of spacetime.
In this letter, we will study the thermodynamics and the phase transition of the AS improved black hole derived in[7]in order to explore the possible ultimate fate of an evaporating black hole. Phase transition of black holes are firstly studied by Davies[8], who insists that the phase transition should turn up at the point where the heat capacities diverge. This characteris-tic is also present in ordinary thermodynamic systems which ex-hibits the second order phase transition. Subsequently, Hawking and Page[9]studied the thermodynamic phase transition in AdS space. Many researches on this topic from different perspectives have been carried out [10–24].
The paper is arranged as follows: we first introduce the AS gravity model with higher derivative terms and give the quantum-corrected vacuum solutions in Section2. The corrected metric will lead to corrected thermodynamic quantities. In Section3, we will calculate the temperature, entropy, energy and heat capacity. In Section4, we study the thermodynamic curvature using the ge-ometrothermodynamics. In Section5, we discuss the phase transi-tion of the AS improved black hole by putting it into a cavity. We will make some concluding remarks in Section6.
การแปล กรุณารอสักครู่..

การดำรงอยู่ของหลุมดำ เป็นคำทำนายโดยตรงของทฤษฎีสัมพันธภาพทั่วไป พวกเขาอาจจะเกิดขึ้นจากการล่มสลายของแรงโน้มถ่วง และปัจจุบันเรื่องเหตุการณ์ขอบฟ้าซึ่งล้อมรอบความเป็นเอกเทศ มากกว่าที่พวกเขาอาจแสดงเองชอบอุณหพลศาสตร์ระบบเนื่องจากการดำรงอยู่ของฮอว์คิงรังสี และเอนโทรปี . ในความเป็นจริงผลที่ได้จากวิธีการกึ่งคลาสสิกซึ่งถือว่าเป็นคลาสสิกทฤษฎีแรงโน้มถ่วงในขณะที่ quantizing เรื่องสาขา [ 1 ] กึ่งคลาสสิกวิธีการที่แสดงถึงว่า ชวาซชิลด์หลุมดำในที่สุดจะระเหยออกไปทางรังสีฮอว์คิง จนมวลเข้าใกล้ศูนย์ ด้วยการระเบิด This result is questionable because quantum gravitational effects cannot be ig-nored at very small scales. In addition, there is another problem that the complete evaporation of black hole will lead to the famous “information paradox”. Although, until now, a complete theory of quantum gravity is not at hand,มีหลายวิธีที่แตกต่างกันที่จะได้รับการแก้ไขไปยังกึ่งคลาสสิกเร่ขายอารมณ์ธรรมชาติและ bekenstein –เร่ขายเอนโทรปี เช่นทั่วไปกรุณความไม่แน่นอนหลักการมูลฐานหลุมดำอุโมงค์วิธีการกลับปฏิกิริยาวิธีการความปลอดภัยเฉลี่ย (
) ฯลฯIn this paper we concentrate on the asymptotic safety sce-nario for quantum gravity put forward by Weinberg[2], which is based on a nontrivial fixed point of the underlying renormalization group(RG) flow for gravity. Instead of the traditional perturbative renormalization, this scenario takes nonperturbative calculations to eliminate the divergencies in quantum field theory.ภาพนี้ intrigu ไอเอ็นจีแสดงเสร็จ nonperturbative รังสีอัลตราไวโอเลตสำหรับแรงโน้มถ่วงที่เขตตันยังคงองศาพื้นฐานของเสรีภาพ ที่สำคัญที่สุด พลังงานต่ำ classi แคลระบอบการปกครองของทฤษฎีสัมพัทธภาพทั่วไปคือการเชื่อมโยงกับระบบพลังงานสูง โดยกำหนดขอบเขต renormalizationgroup , วิถี There are several excellent reviews on the topic of asymptotic safety in quan-tum gravity [3–5]. By replacing Newtonian coupling constant with a “running” coupling, Bonanno and Reuter[6]firstly derived the renormalization group improved black hole metrics. It is shown that the temperature and entropy of the improved black hole will be corrected by some additional terms. In[7], the authors find a spherically symmetric vacuum solution to field equation derived from the AS gravity with higher derivative terms. Similarly, ther-modynamic quantities of the black hole solution are also modified due to the inclusion of quantum gravitational corrections to the dynamics of spacetime.
In this letter, we will study the thermodynamics and the phase transition of the AS improved black hole derived in[7]in order to explore the possible ultimate fate of an evaporating black hole. Phase transition of black holes are firstly studied by Davies[8], who insists that the phase transition should turn up at the point where the heat capacities diverge.นี้ characteris Tic ยังเป็นปัจจุบันธรรมดา ระบบอุณหพลศาสตร์ซึ่งอดีต hibits เฟสที่สองเพื่อการเปลี่ยนแปลง ต่อมา กิง และหน้า [ 9 ] เรียนในระยะเปลี่ยนผ่านทางโฆษณาในพื้นที่ หลายงานวิจัยในหัวข้อนี้จากมุมมองที่แตกต่างกันได้ดําเนินการ 10 – [ 24 ] .
กระดาษได้ดังนี้ we first introduce the AS gravity model with higher derivative terms and give the quantum-corrected vacuum solutions in Section2. The corrected metric will lead to corrected thermodynamic quantities. In Section3, we will calculate the temperature, entropy, energy and heat capacity. In Section4, we study the thermodynamic curvature using the ge-ometrothermodynamics. In Section5,เราหารือเกี่ยวกับระยะ transi tion ของการปรับปรุงเป็นหลุมดำ โดยใส่ลงในช่อง เราจะทำสรุปข้อสังเกตใน section6 .
การแปล กรุณารอสักครู่..
