The emergence of pyrethroid resistant Anopheles funestus (a major African vector) in
malaria affected parts of KwaZuluNatal,
South Africa was correlated with the
malaria epidemic of 1996 2000.
This finding prompted the necessity of
incorporating insecticide resistance management strategies into formal malaria
control policy in South Africa. Resistance management strategies often rely on the
assumption of reduced fitness associated with insecticide resistance and are based on
the principle that resistance genes will tend to drift out of vector populations in the
absence of insecticide selection pressure. This study aimed to determine whether a
fitness cost is associated with pyrethroid resistance as well as to determine the
stability and mode of inheritance of the resistance genes in a pyrethroid resistant
(FUMOZR)
strain of An. funestus. It also aimed to sequence and analyze a segment
of the sodium channel gene for any kdrtype
mutation(s) that may be associated with
pyrethroid resistance. The final aim was to determine the resistance mechanisms
involved in a Ghanaian field population of An. funestus resistant to DDT and
pyrethroids.