Spark Transmitters
In its simplest form a spark transmitter consists of a spark gap connected across an oscillatory circuit consisting of a capacitor and an inductor in series. The capacitor C (see Fig 1a) is charged to a high voltage by an induction coil (not shown). When the potential across it was sufficiently high to break down the insulation of air in the gap, a spark then passed. Since this spark has a comparatively low resistance (an ohm or two), the spark discharge was equivalent to the closing of an L-C-R circuit. The condenser then discharged through the conducting spark, and the discharge took the form of a damped oscillation, at a frequency determined by the resonant frequency of the spark transmitter.
Hertz in 1888 placed the spark gap across the terminals of the antenna, and so the frequency transmitted was determined by the self resonant frequency of the antenna system (an end loaded dipole). Marconi, following the work of Popov, used an end fed wire aerial (a monopole). The damped wave had a very short duration, since as soon as the spark ceased, the oscillation ceased, since the connection for current flow between the antenna terminals (or connection to ground in the case of a monopole antenna) was by way of the spark.
The not wanted gap across the antenna terminals was eliminated by Braun, who in 1898 patented a circuit in which the spark gap was in a separate primary circuit in series with an appropriate coil and condenser. The RF energy flowing in the inductor was inductively coupled to an antenna, which was tuned to the same frequency of the spark transmitter (Fig 1c). The induced oscillation in the antenna circuit was also a damped wave, but the period of oscillation was considerably longer than the oscillation period in the primary, since when the spark ceased, the antenna circuit could continue to oscillate on a frequency determined by the antenna system resonant frequency.
Spark TransmittersIn its simplest form a spark transmitter consists of a spark gap connected across an oscillatory circuit consisting of a capacitor and an inductor in series. The capacitor C (see Fig 1a) is charged to a high voltage by an induction coil (not shown). When the potential across it was sufficiently high to break down the insulation of air in the gap, a spark then passed. Since this spark has a comparatively low resistance (an ohm or two), the spark discharge was equivalent to the closing of an L-C-R circuit. The condenser then discharged through the conducting spark, and the discharge took the form of a damped oscillation, at a frequency determined by the resonant frequency of the spark transmitter.Hertz in 1888 placed the spark gap across the terminals of the antenna, and so the frequency transmitted was determined by the self resonant frequency of the antenna system (an end loaded dipole). Marconi, following the work of Popov, used an end fed wire aerial (a monopole). The damped wave had a very short duration, since as soon as the spark ceased, the oscillation ceased, since the connection for current flow between the antenna terminals (or connection to ground in the case of a monopole antenna) was by way of the spark.The not wanted gap across the antenna terminals was eliminated by Braun, who in 1898 patented a circuit in which the spark gap was in a separate primary circuit in series with an appropriate coil and condenser. The RF energy flowing in the inductor was inductively coupled to an antenna, which was tuned to the same frequency of the spark transmitter (Fig 1c). The induced oscillation in the antenna circuit was also a damped wave, but the period of oscillation was considerably longer than the oscillation period in the primary, since when the spark ceased, the antenna circuit could continue to oscillate on a frequency determined by the antenna system resonant frequency.
การแปล กรุณารอสักครู่..
