In its purest form, a true pyramid consists of four identical triangles, which “spring” from a square base and culminate at a common point. When reduced to its plane geometric components, it is an easy form to comprehend. It is a far more daunting task to create the form in the built environment.
Imagine that you are charged with the construction of a true pyramid, whose square base will cover 13 acres. Perhaps your most daunting task will be ensuring that after decades of construction, the pyramid’s four sides will meet precisely at a point almost fifty stories above the ground. Imagine further that as the builder you have no laser levels, transits or other sophisticated measuring devices at their disposal to aid in the construction process. Well, don’t worry; it’s already been done! Almost 5000 years ago, the ancient Egyptians accomplished this very feat at the Great Pyramid in Giza.
This paper discusses the construction control procedures used in modern building and how important the same control would have for the building of the Egyptian pyramids. Also included is a step-by-step formula that puts forth a set of specific, simple control procedures that illustrate how those ancient Egyptians could have done. This paper is keenly focused on how and where to position the stones in order to create the pyramidal geometry. It is not interested in the quarrying, transporting or handling of stones or in the myriad of other issues regarding pyramid development.
To date, many pyramid researchers have acknowledged in their work that “control” of the pyramidal form would have been a most important aspect of the construction process. I.E.S. Edwards wrote “… imperfections in the setting of the stones would not only mar the outside appearance, but, unless counteracted, would lead to irregularity in the pyramidal form”1. Yet, few have put forth any theories which “standup” when subjected to practical construction analysis. Besides presenting the fundamental concepts, our step by step “how to” formula specifically shows the control procedures which “counteracted” the potential affects of the “imperfections” as stated by Edwards. These solutions are grounded in an understanding of the construction process (which basically has not changed from ancient times to today) and an enthusiasm for problem solving. Surely, those are human qualities, which were as prevalent among the Egyptian pyramid builders as they are among the builders of today.