Cell Protection Protecting the battery from out of tolerance operating conditions is fundamental to all BMS applications. In practice the BMS must provide full cell protection to cover almost any eventuality. Operating a battery outside of its specified design limits will inevitably lead to failure of the battery. Apart from the inconvenience, the cost of replacing the battery can be prohibitive. This is particularly true for high voltage and high power automotive batteries which must operate in hostile environments and which at the same time are subject to abuse by the user.
Charge control This is an essential feature of BMS. More batteries are damaged by inappropriate charging than by any other cause.
Demand Management While not directly related to the operation of the battery itself, demand management refers to the application in which the battery is used. Its objective is to minimise the current drain on the battery by designing power saving techniques into the applications circuitry and thus prolong the time between battery charges.
SOC Determination Many applications require a knowledge of the State of Charge (SOC) of the battery or of the individual cells in the battery chain. This may simply be for providing the user with an indication of the capacity left in the battery, or it could be needed in a control circuit to ensure optimum control of the charging process.
SOH Determination The State of Health (SOH) is a measure of a battery's capability to deliver its specified output. This is vital for assessing the readiness of emergency power equipment and is an indicator of whether maintenance actions are needed.
Cell Balancing In multi-cell battery chains small differences between cells due to production tolerances or operating conditions tend to be magnified with each charge / discharge cycle. Weaker cells become overstressed during charging causing them to become even weaker, until they eventually fail causing premature failure of the battery. Cell balancing is a way of compensating for weaker cells by equalising the charge on all the cells in the chain and thus extending battery life.
History - (Log Book Function) Monitoring and storing the battery's history is another possible function of the BMS. This is needed in order to estimate the State of Health of the battery, but also to determine whether it has been subject to abuse. Parameters such as number of cycles, maximum and minimum voltages and temperatures and maximum charging and discharging currents can be recorded for subsequent evaluation. This can be an important tool in assessing warranty claims.
Authentication and Identification The BMS also allows the possibility to record information about the cell such as the manufacturer's type designation and the cell chemistry which can facilitate automatic testing and the batch or serial number and the date of manufacture which enables traceability in case of cell failures.
Communications Most BMS systems incorporate some form of communications between the battery and the charger or test equipment. Some have links to other systems interfacing with the battery for monitoring its condition or its history. Communications interfaces are also needed to allow the user access to the battery for modifying the BMS control parameters or for diagnostics and test.