In some parts of mathematics, including recursion theory and functional analysis, it is convenient to study partial functions in which some values of the domain have no association in the graph; i.e., single-valued relations. For example, the function f such that f(x) = 1/x does not define a value for x = 0, since division by zero is not defined. Hence f is only a partial function from the real line to the real line. The term total function can be used to stress the fact that every element of the domain does appear as the first element of an ordered pair in the graph.
In other parts of mathematics, non-single-valued relations are similarly conflated with functions: these are called multivalued functions, with the corresponding term single-valued function for ordinary functions.