The preT ribosome contains a deacylated tRNA in the P site (Figure 1b), which may be important for the GDP-to-GTP exchange reaction. This is suggested by experiments on guanine-nucleotide binding to EF-G in another type of ribo- some complex. Here, EF-G was incubated with [3H]-GDPNP and either post-termination (postTerm) or naked ribosomes at varying concentrations of unlabeled GDP (Figure 2d). The postTerm ribosome has a deacylated tRNA in the P site and an empty A site programmed with a stop codon (Figure 1d), while the naked ribosome lacks ligands. The fraction of [3H]-GDPNP retained on a nitrocellulose filter, correspond- ing to ribosome-bound EF-G•[3H]-GDPNP, was reduced to 50% at a 160-fold excess of GDP in the postTerm case, or a 13-fold excess for the naked ribosomes. This implies that EF-G, bound to either type of ribosome, had much higher affinity for GDPNP than for GDP, and that the difference was more pronounced for postTerm than for naked ribo- somes (Figure 2d,e). Accordingly, the presence of a deacylated tRNA in the P site of the preT ribosome led to more stable binding of EF-G•[3H]-GDPNP to this complex than to the naked ribosome. A corresponding stabilization of the EF-G•GTP complex on preT ribosomes by the P-site tRNA is expected, and would contribute to efficient guanine- nucleotide exchange (Figure 2c).