There are several established methods to measure the saturated hydraulic conductivity of porous materials on the basis of Darcy’s law. During the measurement, a pervious concrete sample is subjected to a water pressure that is lower sufficiently to support a laminar flow [1–5]. The associated flowing rate is measured to estimate the permeability. The applied pressure during the measurement can be maintained to be constant, referred to as CHM, or be allowed decaying, called FHM [6]. The CHM measures the permeability of pervious concrete by applying a constant water head on the surface of the sample and by weighting the water volume flowing through the sample at a designed time interval [7, 8]. The FHM allows the water head above the sample surface dropping from a starting level to a designed level and then records the time interval during this dropping process [9, 10]. As the permeability is not measured directly but is calculated by inverting the applied pressure and its associated water flux, the permeability measured from different scales and distinctive experimental setups is likely to render inconsistent values. It thus merits examining whether the pervious concrete’s permeabilities measured from the CHM and the FHM agreed with each other and whether the permeability varies with the applied pressure.