Antimicrobial resistance threatens the effective prevention and treatment of an ever-increasing range of infections caused by bacteria, parasites, viruses and fungi.
It is an increasingly serious threat to global public health that requires action across all government sectors and society.
Antimicrobial resistance is present in all parts of the world. New resistance mechanisms emerge and spread globally.
In 2012, WHO reported a gradual increase in resistance to HIV drugs, albeit not reaching critical levels. Since then, further increases in resistance to first-line treatment drugs were reported, which might require using more expensive drugs in the near future.
In 2013, there were about 480 000 new cases of multidrug-resistant tuberculosis (MDR-TB). Extensively drug-resistant tuberculosis (XDR-TB) has been identified in 100 countries. MDR-TB requires treatment courses that are much longer and less effective than those for non-resistant TB.
In parts of the Greater Mekong subregion, resistance to the best available treatment for falciparum malaria, artemisinin-based combination therapies (ACTs), has been detected. Spread or emergence of multidrug resistance, including resistance to ACTs, in other regions could jeopardize important recent gains in control of the disease.
There are high proportions of antibiotic resistance in bacteria that cause common infections (e.g. urinary tract infections, pneumonia, bloodstream infections) in all regions of the world. A high percentage of hospital-acquired infections are caused by highly resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) or multidrug-resistant Gram-negative bacteria.
Treatment failures due to resistance to treatments of last resort for gonorrhoea (third-generation cephalosporins) have been reported from 10 countries. Gonorrhoea may soon become untreatable as no vaccines or new drugs are in development.
Patients with infections caused by drug-resistant bacteria are generally at increased risk of worse clinical outcomes and death, and consume more health-care resources than patients infected with the same bacteria that are not