The aim of this work was to assess the effect of polyaniline salts (PANI-HA) with various dopant types
on the mechanical and corrosion properties of organic protective coatings dependent on the pigment
volume concentration. The doping acids used included phosphoric acid (H3PO4), sulphuric acid (H2SO4),
hydrochloric acid (HCl), p-toluenesulphonic acid (PTSA), and 5-sulphosalicylic acid (CAS). The polyaniline
salt types were described by their physico-chemical parameters. An epoxy ester resin was used as the
binder for the organic coatings. The organic protective coatings included the various PANI-HA types. The
prepared organic coatings were subjected to mechanical testing, corrosion tests and linear polarisation
technique. Organic coatings achieved during mechanicaltests comparable results regardless ofthe type of
PANI dopant or PVC (pigment volume concentration) with the exception of organic coatings fulfilling the
condition PVC = CPVC (critical pigment volume concentration) which exhibited decrease of mechanical
resistance. The results of accelerated corrosion tests and techniques of linear polarisation testify that in
particular the PVC parameter affects the resulting corrosion resistance. During those tests, the organic
coatings exhibited improved corrosion resistance, particularly at low pigment volume concentrations
(PVC = 0.1–5%) irrespective of the pigment used
Cyclic corrosion tests and/or electrochemical test methods are
largely used to assess the corrosion resistance of organic coatings
[6,22]. Among the electrochemical methods, the linear polarisation
(LP) technique is typically used for corrosion monitoring
Electrochemical corrosion measurements
Accelerated corrosion tests
The aim of this work was to assess the effects of the pigment volume
concentration and of the PANI dopant type on the mechanical
and anticorrosion efficiency of organic coatings containing pigments.
Mechanical tests provided evidence that the mechanical
properties of the organic coatings were unaffected both by the PANI
dopant and by the pigment volume concentration; organic coatings
where the pigment volume concentration reached the critical limit
(PVC = CPVC) were exceptions as the mechanical resistance was
poorer than at lower pigment volume concentrations.
On the contrary, the PANI dopant type as well as the pigment
volume concentration played an important role in coating
corrosion resistance during accelerated corrosion tests as well
as during the electrochemical test based on the linear polarisation
method. During those tests, the organic coatings exhibited improved corrosion resistance, particularly at low pigment volume
concentrations (PVC = 0.1–5%) irrespective of the pigment used.
If the pigment volume concentration was increased to 10% or
higher, the corrosion resistance was considerably poorer and the
corrosion effects were more pronounced with increasing PVC. The
corrosion rate in the linear polarisation test also increased if PVC
levels above 10% were used.
งานวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาผลของเกลือพอลิแอนิลีน ( pani-ha ) กับโดพันท์ประเภทต่าง ๆต่อสมบัติเชิงกลและสมบัติการกัดกร่อนเคลือบป้องกันขึ้นอยู่กับเม็ดสีอินทรีย์ปริมาณความเข้มข้น การเติมกรดที่ใช้คือกรดฟอสฟอริก ( H3PO4 ) , กรด กำมะถัน ( กรดซัลฟิวริก )กรดเกลือ ( HCl ) p-toluenesulphonic acid ( PTSA ) และ 5-sulphosalicylic กรด ( CAS ) ส่วนพอลิแอนิลีนประเภทเกลือ อธิบาย โดยพวกเขาและพารามิเตอร์ เป็นอีพ็อกซี่เรซินใช้เป็นเวัสดุสำหรับเคลือบอินทรีย์ อินทรีย์เคลือบป้องกัน pani-ha รวมชนิดต่าง ๆ ที่เตรียมเคลือบอินทรีย์ภายใต้การทดสอบทางกล , การทดสอบการกัดกร่อนและเส้นโพลาไรเซชั่นเทคนิค เคลือบอินทรีย์ได้ในระหว่าง mechanicaltests เทียบเคียงผล โดยไม่ต้องคำนึงถึงชนิดของผณิโดพันท์หรือ PVC ( ความเข้มข้นของปริมาณเม็ดสี ) ด้วยข้อยกเว้นของเคลือบอินทรีย์ตอบสนองสภาพ = CPVC PVC ( มีปริมาณความเข้มข้นของเม็ดสี ) ซึ่งมีการลดลงของเครื่องกลความต้านทาน ผลของการเร่งการกัดกร่อนการทดสอบและเทคนิคของโพลาไรเซชันเชิงเส้นเป็นพยานว่าโดยเฉพาะอย่างยิ่งพีวีซีมีผลต่อพารามิเตอร์ผลต้านทานการกัดกร่อน . ในระหว่างการทดสอบนั้น อินทรีย์ไม้แปรรูปมีความต้านทานการกัดกร่อนที่ดีขึ้น โดยเฉพาะอย่างยิ่งในระดับความเข้มข้นปริมาณเม็ดสีน้อย( PVC = 0.1 ( 5% ) โดยไม่คำนึงถึงสีใช้การทดสอบการกัดกร่อนแบบวัฏจักรและ / หรือวิธีการทดสอบทางเคมีไฟฟ้าคือไปใช้เพื่อประเมินความต้านทานการกัดกร่อนเคลือบผิวอินทรีย์[ 6,22 ] ระหว่างวิธีการทางเคมีไฟฟ้า , โพลาไรเซชันเชิงเส้น( LP ) เทคนิคที่มักจะใช้สำหรับการตรวจสอบการกัดกร่อนการวัดการกัดกร่อนทางเคมีเร่งทดสอบการกัดกร่อนงานวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาผลของปริมาณเม็ดสีและความเข้มข้นของผณิโดพันท์ประเภทเครื่องจักรกลและประสิทธิภาพของเคลือบ anticorrosion อินทรีย์ที่มีสีการทดสอบทางกลให้หลักฐานที่กลคุณสมบัติของการเคลือบสีอินทรีย์ที่ได้รับผลกระทบทั้งโดยปานิโดพันท์และปริมาณรงควัตถุความเข้มข้น ; เคลือบอินทรีย์ที่เม็ดสีในปริมาณความเข้มข้นสูงถึงขีด จำกัด ที่สำคัญ( PVC = CPVC ) มีข้อยกเว้นเช่นความต้านทานเชิงกล คือยากจนกว่าที่ลดเม็ดสีในปริมาณที่เข้มข้นในทางตรงกันข้าม , ปานิโดพันท์ประเภทเช่นเดียวกับสีปริมาณความเข้มข้น มีบทบาทสำคัญในการเคลือบความต้านทานการกัดกร่อนในช่วงเร่งการกัดกร่อนการทดสอบเช่นกันในระหว่างการทดสอบเคมีไฟฟ้าตามเส้นโพลาไรเซชั่นวิธี ในระหว่างการทดสอบนั้น เคลือบอินทรีย์มีความต้านทานการกัดกร่อนที่ดีโดยเฉพาะอย่างยิ่งที่ปริมาณเม็ดสีน้อยความเข้มข้น ( PVC = 0.1 ( 5% ) โดยไม่คำนึงถึงของรงควัตถุที่ใช้ถ้าเม็ดสีในปริมาณความเข้มข้นเพิ่มขึ้นเป็น 10% หรือสูง , ทนต่อการกัดกร่อนมีมากจน และการกัดกร่อนผลเป็นเด่นชัดมากขึ้นด้วยการเพิ่ม PVC ที่อัตราการกัดกร่อนในการทดสอบเชิงเส้นโพลาไรเซชันเพิ่มขึ้นถ้าพีวีซีระดับข้างต้นร้อยละ 10 ใช้
การแปล กรุณารอสักครู่..