Crispness, Mechanical and Acoustic Properties of Flakes
As shown by Fig. 9, the mechanical properties measured by this test
cannot fully cope with the mapping issued from the sensory analysis, at least
its first component which is “crispness” (Fig. 5A). This is also reflected by
the low correlation obtained between crispness, evaluated by the first sensory
dimension CVA1, with maximum forces reached during complete compressions
or with slopes of first compression step curves (r2 = 0.4 and 0.6, respectively).
Conversely, all samples belonging to the group of most crispy products
exhibited lower Fmax and Slmin values, which support the relevance of the
mechanical test. The main discrepancy arises from samples G and L, having
very different Fmax and Slmin values, although they belong to the same group
of crispness. They are separated from the other samples by the second sensory
dimension, i.e., sensory attributes “sound duration” and “loudness”
(Fig. 5A,B). The average amplitude of acoustic signal, AAS, and the fraction
of peaks of higher amplitude, Rp+, are fairly correlated to the first component
of the sensory analysis which is “crispness” (r2 = 0.63, P = 0.0012 and
r2 = 0.65, P = 0.001, respectively), and suggest that acoustic measurement
may be used for assessment of crispness (Fig. 13). Moreover, the comparison
between Figs. 5A and 10 is encouraging for crispness prediction by an acoustic measurement, even if the analysis in acoustic temporal domain fails into
separating samples G and L from the others. They have AAS and Rp+ values
that are very close to each other, but the sensory analysis clearly separates
these samples from the others in terms of loudness. This limitation may be
due to the speed of biting, which is different from mechanical compression.
Due to the difficulty of simulating human mastication, a more profound
analysis of the possible relation between this sensory dimension and emitted
acoustic signal would require the use of an electronic sensing system that is
directly located on the cheeks and jaws of the panelists, as done by Peng et al.
(2002) for assessing the fracturability of various solid foods. The way fractures
propagate during compression depends on the material structure
(Nicholls et al. 1995), and has an important role in the transmission of vibrations
in the air by acoustic waves. Less crispy products crushing leads to low
frequencies of acoustic signals, like for samples J and E. Moreover, these
samples emitted high-amplitude acoustic signals, while for samples H, K, M
and D, the acoustic emissions are balanced between low and high frequencies,
well split in the studied domain from 1 to 10 kHz.
As previously mentioned, the jaggedness of the signal is often used to
assess “crispness.” This variable was measured for the mechanical signal by
1 - r2), but no significant correlation was found here with CVA1. This apparent
contradiction can first be due to the use of the Kramer cell, which has a
large volume, and that fluctuations are limited by averaging and cushioning
effects. However, the testing volume (about 100 cm3) is close to the one
leading to the largest jaggedness obtained in the study by Nixon and Peleg
(1995). The explanation may rather rely on the fact that, in our study, the
samples only exhibit tiny differences in moisture content (Table 1). In most
studies on crispness of cereal products, the samples are equilibrated at different
moisture contents in order to emphasize the changes of this sensory
property. Thereby, crispness variations and the associated variations of jaggedness
are interpreted by modifications of the temperature of glass transition,
Tg. Differences between mechanical behaviors are mostly due to material
matrix and its components as the amount of glassy starch, or the one of water,
having influenced by lowering the Tg (Attenburrow et al. 1992; Le Meste
et al. 1996). In our case, the samples are all from commercial brands that were
expected to have satisfactory sensory properties, so changes in crispness are
not so significant, although sufficient to be recognized by the sensory panel.
These tinier variations of crispness may not rely on changes of Tg. Texture
behavior cannot be predicted only from the knowledge of the glass transition
temperature alone (Nicholls et al. 1995). Differences on mechanical properties
measured for flakes beds may also be due to the intrinsic properties of
the constitutive material of the flakes. The brittle behavior of starch–zein
systems has been shown not to depend on the Tg of components, but rather on the microstructural morphology of the matrix/particles biopolymer blends
(Chanvrier et al. 2005).
กรอบ , เครื่องกลและเสียงคุณสมบัติของเกล็ดรูปที่ 9 แสดงโดย สมบัติเชิงกล โดยวัดจากแบบทดสอบนี้มันไม่สามารถรับมือกับการทำแผนที่ออกจากการวิเคราะห์ทางประสาทสัมผัส อย่างน้อยครั้งแรกของส่วนประกอบที่เป็น " กรอบ " ( รูปที่ 43 ) นี้สะท้อนให้เห็นโดยความสัมพันธ์ระหว่างคุณภาพต่ำได้ ประเมินเป็นครั้งแรกโดยประสาทสัมผัสมิติ cva1 ด้วยกองกำลังถึงช่วงหน้าอกที่สมบูรณ์สูงสุดหรือกับความชันของเส้นโค้งขั้นตอนการบีบอัดก่อน ( R2 = 0.4 และ 0.6 ตามลำดับ )ในทางกลับกัน ตัวอย่างทั้งหมดที่อยู่ในกลุ่มของผลิตภัณฑ์ กรอบมากที่สุดมี fmax ลดลงและ slmin ค่า ซึ่งสนับสนุนความเกี่ยวข้องของการทดสอบทางกล ความขัดแย้งหลักเกิดขึ้นจากตัวอย่าง G และ L มีfmax แตกต่างกันมากและ slmin ค่า แม้ว่าพวกเขาอยู่ในกลุ่มเดียวกันของกรอบ . พวกเขาจะแยกจากตัวอย่างอื่น ๆที่สองประสาทสัมผัสมิติ คือ ด้านคุณลักษณะเสียง " เวลา " และ " ความดัง "( รูปที่ 43 , B ) ค่าเฉลี่ยของค่าแอมพลิจูดของสัญญาณอะคูสติก , AAS และเศษส่วนยอดสูงของที่ดี + ค่อนข้างมีความสัมพันธ์กับส่วนแรกการวิเคราะห์ทางประสาทสัมผัสซึ่งเป็น " กรอบ " ( R2 = 0.63 , p = 0.0012 และR2 = 0.65 , p = 0.001 ตามลำดับ ) และแนะนำการวัดอะคูสติกอาจจะใช้สำหรับการประเมินคุณภาพ ( รูปที่ 13 ) นอกจากนี้ การเปรียบเทียบระหว่างลูกมะเดื่อ . 5A และ 10 เป็นนิมิตสำหรับกรอบการคาดการณ์โดยการวัดอะคูสติก แม้ว่าการวิเคราะห์อะคูสติกและล้มเหลวเป็นโดเมนตัวอย่างการแยกและจากคนอื่น ๆ มีไซด์และ RP + ค่าที่สนิทสนมกันมาก แต่การแยกวิเคราะห์ได้อย่างชัดเจนเหล่านี้ตัวอย่างจากคนอื่นในแง่ของความดัง . ข้อ จำกัด นี้อาจจะเนื่องจากความเร็วของการเสียดสี ซึ่งแตกต่างจากกลไกการบีบอัดเนื่องจากความยากของมนุษย์จำลองการเคี้ยว , ลึกซึ้งมากขึ้นการวิเคราะห์ความสัมพันธ์ที่เป็นไปได้ระหว่างนี้ทางมิติ และปล่อยออกมาสัญญาณจะต้องมีการใช้ระบบตรวจจับอิเล็กทรอนิกส์นั่นคือตั้งอยู่โดยตรงบนแก้มและขากรรไกรของผู้ที่ทำโดย Peng et al .( 2002 ) เพื่อประเมิน fracturability อาหารแข็งต่าง ๆ วิธีหักเผยแพร่ในระหว่างการบีบอัดขึ้นอยู่กับโครงสร้างวัสดุ( Nicholls et al . 1995 ) , และมีบทบาทสำคัญในการส่งผ่านการสั่นสะเทือนในอากาศตามเสียงคลื่น กรอบน้อยกว่าผลิตภัณฑ์บดาต่ำความถี่ของสัญญาณเสียง เหมือนอย่าง J และ E นอกจากนี้ เหล่านี้ตัวอย่างที่ปล่อยสัญญาณเสียงความถี่สูง ในขณะที่ตัวอย่าง H , K , Mและ D , การปล่อยอะคูสติกมีความสมดุลระหว่างต่ำและความถี่สูงก็แบ่งใช้โดเมนจาก 1 ถึง 10 กิโลเฮิรตซ์ตามที่กล่าวถึงก่อนหน้านี้ jaggedness ของสัญญาณจะใช้บ่อยๆประเมิน " กรอบ " ตัวแปรนี้คือวัดสัญญาณทางกลโดย1 - R2 ) แต่ไม่มีความสัมพันธ์กับ cva1 พบที่นี่ . นี้ ปรากฏความขัดแย้งครั้งแรกสามารถเป็นเนื่องจากการใช้เซลล์ เครเมอร์ ซึ่งมีปริมาณมาก และจะถูก จำกัด โดยเฉลี่ย และกันกระแทก ผันผวนผลกระทบ อย่างไรก็ตามการทดสอบปริมาณ ( ประมาณ 100 cm3 ) อยู่ใกล้กับหนึ่งชั้นนำที่ใหญ่ที่สุดใน jaggedness ได้รับการศึกษาโดยนิกสันเปเลก( 1995 ) คำอธิบายอาจจะอาศัยข้อเท็จจริงที่ว่า ในการศึกษาของเราตัวอย่างเท่านั้นมีความแตกต่างเล็ก ๆในความชื้น ( ตารางที่ 1 ) ใน ที่สุดการศึกษาคุณภาพของผลิตภัณฑ์ธัญพืช จำนวน equilibrated ที่แตกต่างกันความชื้น เพื่อเน้นการเปลี่ยนแปลงของประสาทสัมผัสคุณสมบัติ ดังนั้นการเปลี่ยนแปลงของน้ำมันและเชื่อมโยงการเปลี่ยนแปลงของ jaggednessโดยการตีความของอุณหภูมิของการเปลี่ยนแก้วสายการบินไทย ความแตกต่างระหว่างพฤติกรรมเชิงกลเป็นส่วนใหญ่เนื่องจากวัสดุเมทริกซ์และส่วนประกอบเป็นจํานวนเหลือบ แป้ง หรือหนึ่งในน้ำที่มีอิทธิพลโดยการลด TG ( attenburrow et al . meste 1992 ; เลอet al . 1996 ) ในกรณีของเรา กลุ่มตัวอย่างทั้งหมดจากแบรนด์ที่เชิงพาณิชย์คาดว่าจะมีคุณสมบัติทางประสาทสัมผัสที่น่าพอใจ ดังนั้นการเปลี่ยนแปลงในความเป็นไม่ได้สำคัญมาก แม้ว่าเพียงพอที่จะได้รับการยอมรับโดยแผงประสาทสัมผัสเหล่านี้รูปแบบของความเล็กจิ๋วไม่อาจอาศัยการเปลี่ยนแปลงของสายการบินไทย พื้นผิวไม่สามารถทำนายพฤติกรรมได้เท่านั้น จากความรู้ของแก้วที่เปลี่ยนอุณหภูมิคนเดียว ( Nicholls et al . 1995 ) ความแตกต่างในคุณสมบัติเชิงกลวัดสะเก็ดเตียงอาจจะเนื่องจากคุณสมบัติที่แท้จริงของวัสดุที่เป็นส่วนประกอบของเกล็ด พฤติกรรมของแป้งซึ่งทั้งเปราะระบบสามารถแสดงได้ไม่ต้องขึ้นอยู่กับส่วนประกอบของการบินไทย แต่ค่อนข้างบน ลักษณะโครงสร้างจุลภาคของเมทริกซ์ / อนุภาคแบบผสม( chanvrier et al . 2005 )
การแปล กรุณารอสักครู่..
