Pb0.05 and R-square of 0.6773, which indicated a negative effect ofinc การแปล - Pb0.05 and R-square of 0.6773, which indicated a negative effect ofinc ไทย วิธีการพูด

Pb0.05 and R-square of 0.6773, whic

Pb0.05 and R-square of 0.6773, which indicated a negative effect of
increased stocking density or harvested density on final weight (Fig. 3b).
4. Discussion
The development of commercial feed formulations based on
alternative ingredients (non marine sources) has progressed for
numerous species. Previous results (Amaya et al., 2007a,b; Davis et al.,
2004; Ray et al., 2010; Roy et al., 2009; Suárez et al., 2009;) and the
present results from our production trials with shrimp stocked at
different densities, confirmed good results with plant based diets in
both pond and tank based systems. Shrimp production of 4612±
1621 kg ha−1(mean±standard deviation) from the pond trial in
this study was comparable to production of shrimp grown at the same
site under the same stocking density; e.g., Zelaya (2005) reported
shrimp production between 4328 and 4398 kg ha−1 for shrimp fed
commercial feed. Similarly, Venero et al. (2007) reported final
production between 5054 and 6482 kg ha−1 for shrimp fed diet
containing 10% fish meal. For the most part production problems
observed in this study were typical for semi-intensive pond systems;
however, four of the ponds had major water quality issues that
compromised production. Water quality problems stemmed from low
alkalinity of two ponds which were infested with surf clams. This
resulted in poor blooms, high TAN levels and wide swings in pH which
lead to poor production. Two additional ponds suffered from blue
green algae blooms followed by algae crashes and low dissolved
oxygen levels resulting in mortality of shrimp. It is typical for the
facility to have some mortality in the production ponds as a result of
low dissolved oxygen. Low dissolved oxygen problems stem from a
combination of algae crashes, high production densities and aeration
failure. Problems with low alkalinity and blue green algae are not
typical albeit, they have been seen at this site. Due to water quality
problems resulting in highmortality, four ponds were excluded from
the data sets. Unfortunately, the problematic ponds were in the two
low density treatments (17 and 26 shrimpm−2) resulting in only two
replicates per treatment.
As would be expected with increasing density, there was a clear
increase in net yield as density increased. As a descriptive tool, this
response was evaluated using regression analyses either as initial or
harvested stocking density using the entire data set. This response
was linear using either initial or final stocking density however, the fit,
as measured by R-square, was considerably lower for initial stocking
density as compared to the final harvest density (0.6556 compare to
0.9297) (Fig. 1a). These results demonstrate that under these
conditions, there was a linear increase in yield with density of the
shrimp. However, there were minimal shifts in final weights, survival
or FCR. Since variable survival could have influenced these results, the
final weights were also regressed against shrimp density at harvest
(number of shrimp m−2) for the entire data set. The R-square was
very poor (0.0033) using all the pond data. However, exclusion of
problematic ponds resulted in an R-square of 0.1832 (Fig. 1b)
indicating a slight decrease in final weights with harvest density.
Additionally, if one looks at the size distributions from the various
treatments, they appear very similar (Fig. 2). Hence, under the
investigated densities, a density dependent growth response was not
clearly apparent under the pond production conditions. Similarly,
there was no trend in the FCR or survival data under pond production
conditions.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Pb0.05 และ R-สแควร์ของ 0.6773 ซึ่งระบุผลกระทบของเพิ่มมิติความหนาแน่นหรือความหนาแน่นที่เก็บเกี่ยวในขั้นสุดท้ายน้ำหนัก (Fig. 3b)4. สนทนาการพัฒนาสูตรอาหารทางการค้าตามส่วนผสมอื่น (ไม่ใช่ทะเลแหล่ง) มีความก้าวหน้าในสายพันธ์ต่าง ๆ ผลลัพธ์ก่อนหน้า (al. et อมายา 2007a, b Davis et al.,2004 เรย์ et al., 2010 รอยเอ็ด al., 2009 Suárez et al., 2009;) และปัจจุบันผลจากการทดลองของเราผลิตกุ้งที่เก็บที่ความหนาแน่นแตกต่างกัน ยืนยันผลลัพธ์ที่ดีกับอาหารพืชที่อยู่ในบ่อและถังตามระบบ ผลิตกุ้ง 4612±ha−1(mean±standard deviation) 1621 กิโลกรัมจากการทดลองในบ่อการศึกษานี้ได้เปรียบการผลิตกุ้งโตที่เดียวกันเว็บไซต์ภายใต้ความหนาแน่นเก็บสต็อกเดียวกัน เช่น Zelaya (2005) รายงานผลิตกุ้งระหว่าง ha−1 กิโลกรัม 4328 และ 4398 สำหรับกุ้งเลี้ยงอาหารทางการค้า ในทำนองเดียวกัน Venero et al. (2007) รายงานขั้นสุดท้ายผลิตระหว่าง ha−1 กิโลกรัม 5054 และ 6482 สำหรับกุ้งเลี้ยงอาหารมีอาหารปลา 10% ปัญหาการผลิตส่วนใหญ่ในที่นี้ศึกษาได้ทั่วไปสำหรับระบบบ่อกึ่งเร่งรัดอย่างไรก็ตาม สี่บ่อที่มีน้ำหลักประเด็นคุณภาพที่การผลิตถูกโจมตี ปัญหาคุณภาพน้ำดังจากน้อยสภาพด่างของบ่อที่สองที่ไม่รบกวนกับคลื่นหอย นี้ส่งผลให้ไม่ดีบลูมส์ สูงระดับ และกว้างชิงช้าในค่า pH ที่นำไปสู่การผลิตที่ดี รับความเดือดร้อนเพิ่มเติมบ่อสองสีฟ้าส่วนยุบบลูมส์สาหร่ายเขียวไปมาแล้ว โดยเกิดปัญหาสาหร่าย และต่ำระดับออกซิเจนที่เป็นผลในการตายของกุ้ง เป็นปกติสำหรับการสิ่งอำนวยความสะดวกให้บางตายในบ่อผลิตเป็นผลมาจากปริมาณออกซิเจนละลายต่ำ ต่ำส่วนยุบปัญหาออกซิเจนที่เกิดจากการชุดสาหร่ายล้มเหลว ความหนาแน่นสูงผลิต และ aerationความล้มเหลว ไม่มีปัญหากับสภาพด่างต่ำและสาหร่ายสีเขียวสีน้ำเงินทั่วไปแม้ว่า พวกเขาได้เห็นในเว็บไซต์นี้ เนื่องจากคุณภาพน้ำปัญหาที่เกิดขึ้นใน highmortality บ่อสี่ถูกแยกออกจากชุดข้อมูล อับ บ่อมีปัญหาอยู่สองรักษาความหนาแน่นต่ำ (shrimpm−2 17 และ 26) เกิด 2 เท่าเหมือนกับต่อการรักษามีการล้าง ตามจะได้ มีการเพิ่มความหนาแน่นเพิ่มผลตอบแทนสุทธิเป็นความหนาแน่นเพิ่มขึ้น เป็นเครื่องมืออธิบาย นี้ตอบได้ถูกประเมินโดยใช้การถดถอยวิเคราะห์การเริ่มต้น หรือเก็บเกี่ยวถุงน่องโดยใช้ชุดข้อมูลทั้งหมดความหนาแน่น คำตอบนี้ไม่เชิงเส้นโดยใช้เริ่มต้น หรือสุดท้ายสร้างความหนาแน่นอย่างไรก็ตาม พอดีวัดจาก R สแควร์ ถูกมากต่ำกว่าสำหรับมิติเริ่มต้นความหนาแน่นเมื่อเทียบกับความหนาแน่นสุดท้ายเก็บเกี่ยว (0.6556 เปรียบเทียบกับ0.9297) (fig. 1a) ผลเหล่านี้แสดงให้เห็นที่ภายใต้เหล่านี้เงื่อนไข มีการเพิ่มขึ้นเชิงเส้นผลตอบแทนกับความหนาแน่นของการกุ้ง อย่างไรก็ตาม มีกะน้อยที่สุดในขั้นสุดท้ายน้ำหนัก อยู่รอดหรือ FCR เนื่องจากรอดตัวแปรสามารถมีอิทธิพลเหล่านี้ผลลัพธ์ การน้ำหนักสุดท้ายก็ยังมีปัญหากับความหนาแน่นของกุ้งที่เก็บเกี่ยว(จำนวนกุ้ง m−2) สำหรับชุดข้อมูลทั้งหมด มี R-สแควร์ยาก (0.0033) ใช้ข้อมูลบ่อ อย่างไรก็ตาม ไม่บ่อมีปัญหาส่งผลให้ R-ตารางของ 0.1832 (Fig. 1b)ระบุลดลงเล็กน้อยสุดท้ายน้ำหนัก มีความหนาแน่นของการเก็บเกี่ยวนอกจากนี้ หากมองที่การกระจายขนาดจากต่าง ๆรักษา ปรากฏคล้าย (Fig. 2) ด้วยเหตุนี้ ภายใต้การตรวจสอบความหนาแน่น การตอบสนองการเจริญเติบโตขึ้นอยู่กับความหนาแน่นไม่ชัดเจนชัดเจนภายใต้เงื่อนไขการผลิตบ่อ ในทำนองเดียวกันมีแนวโน้มไม่ข้อมูล FCR หรืออยู่รอดภายใต้บ่อผลิตเงื่อนไขการ
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
Pb0.05 and R-square of 0.6773, which indicated a negative effect of
increased stocking density or harvested density on final weight (Fig. 3b).
4. Discussion
The development of commercial feed formulations based on
alternative ingredients (non marine sources) has progressed for
numerous species. Previous results (Amaya et al., 2007a,b; Davis et al.,
2004; Ray et al., 2010; Roy et al., 2009; Suárez et al., 2009;) and the
present results from our production trials with shrimp stocked at
different densities, confirmed good results with plant based diets in
both pond and tank based systems. Shrimp production of 4612±
1621 kg ha−1(mean±standard deviation) from the pond trial in
this study was comparable to production of shrimp grown at the same
site under the same stocking density; e.g., Zelaya (2005) reported
shrimp production between 4328 and 4398 kg ha−1 for shrimp fed
commercial feed. Similarly, Venero et al. (2007) reported final
production between 5054 and 6482 kg ha−1 for shrimp fed diet
containing 10% fish meal. For the most part production problems
observed in this study were typical for semi-intensive pond systems;
however, four of the ponds had major water quality issues that
compromised production. Water quality problems stemmed from low
alkalinity of two ponds which were infested with surf clams. This
resulted in poor blooms, high TAN levels and wide swings in pH which
lead to poor production. Two additional ponds suffered from blue
green algae blooms followed by algae crashes and low dissolved
oxygen levels resulting in mortality of shrimp. It is typical for the
facility to have some mortality in the production ponds as a result of
low dissolved oxygen. Low dissolved oxygen problems stem from a
combination of algae crashes, high production densities and aeration
failure. Problems with low alkalinity and blue green algae are not
typical albeit, they have been seen at this site. Due to water quality
problems resulting in highmortality, four ponds were excluded from
the data sets. Unfortunately, the problematic ponds were in the two
low density treatments (17 and 26 shrimpm−2) resulting in only two
replicates per treatment.
As would be expected with increasing density, there was a clear
increase in net yield as density increased. As a descriptive tool, this
response was evaluated using regression analyses either as initial or
harvested stocking density using the entire data set. This response
was linear using either initial or final stocking density however, the fit,
as measured by R-square, was considerably lower for initial stocking
density as compared to the final harvest density (0.6556 compare to
0.9297) (Fig. 1a). These results demonstrate that under these
conditions, there was a linear increase in yield with density of the
shrimp. However, there were minimal shifts in final weights, survival
or FCR. Since variable survival could have influenced these results, the
final weights were also regressed against shrimp density at harvest
(number of shrimp m−2) for the entire data set. The R-square was
very poor (0.0033) using all the pond data. However, exclusion of
problematic ponds resulted in an R-square of 0.1832 (Fig. 1b)
indicating a slight decrease in final weights with harvest density.
Additionally, if one looks at the size distributions from the various
treatments, they appear very similar (Fig. 2). Hence, under the
investigated densities, a density dependent growth response was not
clearly apparent under the pond production conditions. Similarly,
there was no trend in the FCR or survival data under pond production
conditions.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
และ pb0.05 r-square ของ 0.6773 ซึ่งชี้ให้เห็นผลกระทบของ
เพิ่มความหนาแน่นหรือเก็บเกี่ยวที่มีต่อน้ำหนักสุดท้าย ( รูปที่ 3B )
4 การอภิปรายการพัฒนาสูตรอาหาร

โฆษณาขึ้นอยู่กับส่วนผสมทางเลือก ( ไม่ใช่ทะเลแหล่ง ) มีขึ้นสำหรับ
ชนิดต่าง ๆ ผลลัพธ์ก่อนหน้า ( Amaya et al . , 2007a , B ; Davis et al . ,
2004 ; เรย์ et al . , 2010 ; รอย et al . , 2009ซู ซัวเรซ et al . , 2009 ; ) และนำเสนอผลจากการทดลองการผลิตของเรา

กุ้งเลี้ยงที่ความหนาแน่นต่างกัน ยืนยันผลลัพธ์ที่ดีกับโรงงานที่ใช้อาหารในบ่อและถังตาม
ทั้งระบบ การผลิตกุ้งของ 4612 ±
1537 กกฮา− 1 ( ค่าเฉลี่ยส่วนเบี่ยงเบนมาตรฐาน± ) จากบ่อทดลอง
การศึกษาเปรียบการผลิตกุ้งโตพร้อมกัน
เว็บไซต์ภายใต้ความหนาแน่นเดียวกัน เช่นg., Zelaya (2005) reported
shrimp production between 4328 and 4398 kg ha−1 for shrimp fed
commercial feed. Similarly, Venero et al. (2007) reported final
production between 5054 and 6482 kg ha−1 for shrimp fed diet
containing 10% fish meal. For the most part production problems
observed in this study were typical for semi-intensive pond systems;
however, four of the ponds had major water quality issues that
compromised production. Water quality problems stemmed from low
alkalinity of two ponds which were infested with surf clams. This
resulted in poor blooms, high TAN levels and wide swings in pH which
lead to poor production. Two additional ponds suffered from blue
green algae blooms followed by algae crashes and low dissolved
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: