Figure 10. Water forms a nearly perfect ball, as shown in left photo, suspended on the tips of tiny blades of nanograss.One of the possible applications is cooling on a micro scale. The recently published theoretical work of Pamula [31] has shown a possible configuration based on fast moving droplets under a chip. They showed that with 0.4 ml/min it is theoretically possible to cool 90 W/cm2. Recently Leuven University in collaboration with Philips Research published two papers on this subject [32, 33]. The Philips approach differs from the Duke approach in that it concerns an oscillating flow. At Bell Labs researchers coupled electrowetting with nanostructured superhydrophobic surfaces (coined ‘nanograss’) to result in dynamically tunable surfaces [34]. One application is the movement of droplets to cool hot spots; however, no further heat transfer data are given.