Let i z denote an image patch centered at position , i (, ) S ij zz a certain measure of similarity between i z and , j z and denote by N , ik a directional neighborhood of i z along direction . k We define prior preference P, ij for selecting a source patch i z as a candidate replacement for the damaged target patch j z as follows:
The first term measures, as usual, the similarity with the known part of the target patch. The novelty is in the second term, which takes care of the agreement with the wider context around the target patch. In particular, the more the candidate patch i z fits with the neighborhood of the damaged patch j z in any direction where structures of interest are likely to propagate, the more preference it will get in the selection process.
Common measures of patch similarity are defined in terms of the sum of squared differences among the patches (, ) D ij zz, ij2zz =- calculated over the known pixels. We used (, )( ,) SD ij ij zz zz =- for the candidate selection in (3). With
this improved candidate selection process in combination with
simple greedy inpainting (selection of one replacement patch at
each position), we already obtain a clear improvement over the
earlier method from [7], as is visible in Figure 8 (notice, in particular, that the effect of deleting parts of letters is less severe).
One can also select multiple candidates, with several largest values of P, ij in (3) and subsequently solve the resulting “puzzle”
using a global optimization method like in [17] and [25]. It
would be interesting to explore also alternative solutions, like
the statistics of patch offsets [16] or hierarchical, superresolution-based inpainting [18].
ให้ฉัน z แสดงการแก้ไขรูปภาพแปลกตำแหน่ง zz ij แค S i () ที่วัดความคล้ายระหว่างฉัน z และ j z และแสดง โดย N, ik ย่านทิศทางของไอซีตามทิศทางการ k ที่เรากำหนดก่อนชอบ P, ij แคสำหรับเลือกแหล่งโปรแกรมแก้ไขฉัน z z j ปรับปรุงเป้าหมายเสียหายแทนผู้สมัครดังนี้: ในระยะแรกวัด ตามปกติ คล้ายกับส่วนของโปรแกรมปรับปรุงเป้าหมายรู้จักการ นวัตกรรมที่อยู่ในระยะที่สอง ที่จะดูแลข้อตกลงกับบริบทกว้างขึ้นรอบแก้ไขเป้าหมาย โดยเฉพาะอย่างยิ่ง มากขึ้นผู้สมัครแก้ไขฉัน z เหมาะสมกับพื้นที่ใกล้เคียงของ z j เสียแก้ไขในทิศทางที่จะเผยแพร่ การกำหนดลักษณะอื่น ๆ นั้นจะได้รับในการเลือกโครงสร้างที่น่าสนใจ มีกำหนดมาตรการทั่วไปของโปรแกรมปรับปรุงความคล้ายคลึงกันในแง่ของผลรวมของผลต่างกำลังสองระหว่างการปรับปรุง () D ij แค zz, ij2zz = - คำนวณกว่าพิกเซลที่รู้จัก เราใช้ () () SD ij แค ij แค zz zz =- สำหรับการเลือกผู้สมัครใน (3) มี กระบวนการเลือกผู้สมัครที่ดีขึ้นนี้ร่วมกับ อย่างตะกละ inpainting (เลือกหนึ่งแทนการปรับปรุงที่ แต่ละตำแหน่ง), เราแล้วได้รับการปรับปรุงที่ชัดเจนกว่านี้ ก่อนหน้านี้วิธี [7], เป็นแสดงในรูปที่ 8 (สังเกต โดยเฉพาะ ว่าผลของการลบส่วนของตัวอักษรความรุนแรงน้อยกว่า) สามารถเลือกหลายอันดับ ค่าหลายค่าที่ใหญ่ที่สุดของ P, ij แคใน (3) และต่อมาแก้ได้ "ปริศนา" using a global optimization method like in [17] and [25]. It would be interesting to explore also alternative solutions, like the statistics of patch offsets [16] or hierarchical, superresolution-based inpainting [18].
การแปล กรุณารอสักครู่..

ให้ฉันแสดงเป็นภาพที่แก้ไข Z ศูนย์กลางที่ตำแหน่ง I ( , ) เป็นมาตรการหนึ่งของไจ๋ IJ ความเหมือนระหว่างฉันและ Z , J Z และแสดงโดย N IK เป็นทิศทางใกล้กับฉัน Z ตามทิศทาง K เรากำหนดก่อนการตั้งค่า p , IJ สำหรับเลือกแหล่งของแพทช์ผม Z เป็นผู้สมัครทดแทนส่วนที่เสียหายแก้ไขเป้าหมาย J Z ดังนี้
1 ภาคเรียน ตามปกติความเหมือนกับรู้จักส่วนหนึ่งของแพทช์ของเป้าหมาย นวัตกรรม คือ ในระยะที่สอง ซึ่งจะใช้เวลาการดูแลของข้อตกลงกับบริบทที่กว้างขึ้นรอบแพทช์ของเป้าหมาย โดยเฉพาะยิ่งผู้สมัคร Patch ผม Z เหมาะกับบ้านที่เสียหายปะ J Z ไปในทิศทางใด ซึ่งโครงสร้างของอัตราดอกเบี้ยมีแนวโน้มที่จะเผยแพร่ ,เพิ่มเติมการตั้งค่าจะได้รับในกระบวนการเลือก
มาตรการทั่วไปของแพทช์ความคล้ายคลึงถูกกำหนดในแง่ของผลรวมของความแตกต่างระหว่างสองแพทช์ ( , ) D ij ZZ , ij2zz = - คำนวณมากกว่ารู้จักพิกเซล เราใช้ ( , ) ( , ij ij ไจ๋ไจ๋ ) SD = - สำหรับการเลือกผู้สมัครใน ( 3 ) โดยกระบวนการคัดเลือกผู้สมัครด้วย
ในการรวมกันกับInPaintingComment โลภง่าย ( เลือกแทนหนึ่งแพทช์ที่
แต่ละตำแหน่ง ) เราก็จะได้รับการปรับปรุงที่ชัดเจนกว่า
ก่อนหน้านี้วิธีการจาก [ 7 ] , จะปรากฏในรูปที่ 8 ( สังเกต โดยเฉพาะ ซึ่งผลของการลบส่วนของตัวอักษรที่เป็นรุนแรงน้อย )
หนึ่งยังสามารถเลือกผู้สมัครหลาย ที่มีค่ามากที่สุดหลายของ Pแอลเจ ( 3 ) และต่อมาได้แก้ปัญหาที่เกิด " ปริศนา "
ใช้ทั่วโลกเพิ่มประสิทธิภาพวิธีการเหมือนใน [ 17 ] และ [ 25 ] มันอาจจะน่าสนใจที่จะสำรวจ
ยังโซลูชั่นทางเลือก เช่น สถิติของแพทช์เหลื่อม [ 16 ] หรือลําดับชั้นตาม superresolution InPaintingComment [ 18 ]
การแปล กรุณารอสักครู่..
