Species with inherently surface-inhabiting root systems are notably tolerant of prolonged waterlogging (Justin and Armstrong, 1987a). However, if those species with deeper and thus more vulnerable roots are to revive, they must form replacement roots positioned near or at the better-aerated soil surface. There are three mechanisms for generating these replacement root systems. One is a stimulation of the outgrowth of root primordia already present within the shoot base (e.g., in Zea mays - Fig.8A). A second is the induction of a new root system that involves initiation of root primordia and their subsequent outgrowth (e.g. in Helianthus annuus [Fig 8B] and Rumex palustris). Ethylene seems to be involved in both these processes. Applications of the gas to Z. mays strongly promotes primordial emergence (Jackson et al. 1981) although subsequent elongation is inhibited in association with aerenchyma formation. In nature, this inhibition may be mitigated by internal ventilation of ethylene out through the aerenchyma (Visser et al. 1997). Where replacement rooting involves initiation of new root primordia, auxin and ethylene are both thought to interact to bring this about (Visser et al., 1996). A third mechanism of placing roots at the soil surface involves a re-orientation of the root extension. Lateral roots of certain species grow upwards in waterlogged soils (Pereira and Kozlowski, 1977); Gibberd et al. 2001). When they reach the surface, they offer a replacement pathway for aeration of other attached roots provided there is adequate internally interconnected aerenchyma.