In determining the span loads and boom thrusts, not only is the derrick safe working load considered to be supported by the span, but also the weight of the cargo purchase and half the boom weight. The other half of the boom weight is supported by the gooseneck fitting. Allowances must be made for the frictional resistance of the blocks when
determining the forces. This includes an allowance for the rope friction, i.e. the effort required to bend and unbend the rope around the pulley, as well as an allowance for journal friction. Shipbuilders using British Standards adopt the following assumed cumulative friction values. Small and medium 8 per cent sheave with bushed plain bearings sheaves 5 per cent sheave with ball or roller bearings Large diameter 6 per cent sheave with bushed plain bearings sheaves 4 per cent sheave with ball or roller bearings Derrick exceeding 80 5 per cent sheave with bushed plain bearings tonnes SWL 3 per cent sheave with ball or roller bearings Force diagrams which are more involved than those for the single swinging
derrick are prepared for the union purchase rig. These diagrams indicate the safe working load of the rig, the ‘limiting height’, the boom thrusts which are greater with this rig, and the optimum guy leads. The ‘limiting height’ is that height below which all positions of the lifted weight will result in an included angle between the outboard and inboard runners of less than 120°. At 120° if the boom heads are level the inboard and outboard runners will experience a force equivalent to the cargo weight (see Figure 24.5). Usually the runner size determines the safe working load in union purchase,but the thrust experienced by the derrick boom can determine this value where only light derricks are fitted. The positioning of the guys can be important to the loads experienced by the span and the guys themselves. If these are at too narrow an angle to the boom, excessive tension in the guys will result; a good lead is therefore essential. Unfortunately in practice the magnitude of the guy loads is not always appreciated, but more attention has been paid to this problem of late and preventers are now often set up to reduce the load in the guy. There is available a suitable preventer for this purpose; the use of old runners, etc., as preventers should not be tolerated. In union purchase rigs it is possible to obtain a condition where the load comes off the outboard span, and the boom may then close to the mast under load. This condition is referred to as ‘jack-knifing’, and may be apparent from the force diagram prepared for the rig, since the triangle of
forces does not close. At the design stage the guy positions can be adjusted to avoid this happening. In practice this condition appears to occur occasionally where derricks are used in union purchase at the bridge front. Here the positioning of the guys is made difficult by the presence of the bridge