“It is a nice piece of work and is perhaps one of the first complete demonstrations of antibiotic resistance mechanisms from genome sequencing information,” microbiologist Julian Davies, a professor emeritus at the University of British Columbia who was not involved in the work, told The Scientist in an e-mail.
“The novelty is in the detail here,” agreed David Hopwood, former head of the genetics department and now emeritus fellow at the John Innes Centre, who also did not participate in the research. “It tells us a lot of interesting things about fatty acid biosynthesis in bacteria . . . [and] about the way that the antibiotics interact with [that] pathway.”
Since researchers first identified platensimycin and platencin, they have questioned how the compounds do not disrupt the synthesis of S. platensis’s own fatty acids. “If the organism is making an antibiotic which is potentially lethal, it has to protect itself,” Hopwood said. “So almost always an antibiotic producer has self-protecting mechanisms.”