An investigationwascarriedouton12,854fortnightlytestdaymilkyieldsrecordsof
first lactationpertainingto643Sahiwalcowssiredby51bullsspreadover49years
locatedattheNationalDairyResearchInstitute,Karnal.Thecomparisonwasmade
betweentherelativeefficiencyofmultiplelinearregressionanalysisandartificial
neuralnetwork(ANN)forpredictionoffirstlactation305dmilkyield(FL305DMY)in
Sahiwalcows.ArtificialNeuralNetworkwastrainedusingthreebackpropagation
algorithmsviz. Bayesian regularization (BR), Scaledconjugategradient (SCG)and Levenberg–
Marquardt (LM). Further,thesethreealgorithmswerecomparedusingfoursetsof
trainingandtestdatasetsat66.67–33.33%,75–25%,80–20%and90–10%.Ithasbeen
foundthatthecoefficientofdeterminationofthemodelswasincreasedwiththe
additionoftestdaymilkyieldsasinputvariables.Itwasinferredfromthestudythat
artificialneuralnetworkwasbetterthanthemultiplelinearregressionanalysisto
predictFL305DMYwithmorethan80%accuracybyalmostallthemodelsatanearly
stagei.e.by111thdayofthelactationhavinglesservalueofRMSEthanMLR.Therefore,
it isrecommendedthatANNcanbeapotentialtoolforthepredictionofthefirst
lactation305-daymilkyieldinSahiwalcows.