The assignment of different backscatter classes to the ice cover types (i.e., consolidated ice, juxtaposed ice, thermal ice, and open water) was based on the responses of river ice covers to radar signals (see Sections 2.2 and 2.3) and visual interpretation of ice cover types along the Slave River in the image acquired on 21 November 2013 [6]. The first class (#1), with the lowest backscatter, was then extracted to create a mask on the texture-analyzed images for classifying open water and thermal ice. The backscatter classes from #2 to #10 (low to high backscatter values) were reclassified to create thermal ice (#2 and #3), juxtaposed ice (#4), and consolidated ice (#5 to #10). In the second stage of ice mapping, the fuzzy k-means classifier was applied to the texture-analyzed images to identify six classes of ice cover types. Only pixels (classes) within the mask from class #1, the first stage of backscatter-based classification, were extracted. These classes were then reclassified to create open water and thermal ice layers. Subsequently, three classes of thermal, juxtaposed and consolidated ice from the first classifying step were mosaicked with two classes of open water and thermal ice from the second step, creating the final ice cover map for the Slave River. Only those imagery information were extracted that coincided with the polygon areas of the river sections which are available from the CanVec database at Natural Resources Canada. Additionally, both co- (HH) and cross- (HV) polarizations were used in the backscatter-based classification of filtered images, while the texture-based classification was used with a single co-polarization (HH) backscatter. The mapping algorithm was primarily developed based on the ice cover conditions on the 21 November 2013 RADARSAT-2 image and then applied to all other images from both studied winters (Table 1). In order to compare the thresholds of backscatter values corresponding to different ice types, the backscatter samples (in dB unit) of each ice type were also extracted