4.2. Results from combined analysis with c5++
Combining VLBI and GPS on the observation level is the most natural way to estimate common parameters at geodetic co-location sites. With this approach, biases and technique-specific considerations can be taken into account before the observations are combined directly within the adjustment process. Two of such inter-technique biases are those related to troposphere and clock variability. The former one being mainly caused by different heights of the reference points of co-located instruments, which translate into a hydrostatic delay that can be either modeled or, as done in the present study, estimated as a constant offset during each 72 h batch analysis. The latter offset, hereafter denoted as Δclk(t), is expected to be caused by temperature-induced cable delay variations and can either be estimated as a constant offset or parametrized by a PLO model with sufficient temporal resolution to follow cable delay changes. It is obvious that the choice of this inter-technique delay potentially absorbs any benefit that could result from the estimation of a common clock between the two techniques. A too-short temporal resolution of Δclk(t) bears the risk that a large fraction of valuable information from the second technique is not being reflected in the estimated clock. On the other hand, an insufficient model representation of the mostly diurnal cable length changes potentially degrades the combined solution and the obtained clock parameters. Therefore, different choices for the temporal resolution of the inter-technique cable delay model Δclk(t) have been used and their impact on the frequency transfer stability has been evaluated.
4.3. The impact of the choice for the temporal resolution of the inter-technique cable delay model
In order to evaluate whether the combination of VLBI and GPS leads to an improvement of the frequency transfer stability w.r.t. the GPS-only solution, the ratio
Equation (3)
is defined, where N is the number of baselines that are averaged. The ratio κ(τ) describes the average improvement/degradation when combining VLBI with GPS on the observation level for frequency transfer, compared to a GPS-only solution. Since the intervals for the PLO clock model were set to 5 min (see table 1) in both solutions one can compute κ(τ) in a straightforward way. Improvements in the overall frequency transfer performance will then be reflected as κ(τ) > 1, whereas degradations can be recognized when κ(τ) < 1. Since the data were processed in batches of 3 consecutive days one would expect to have N = 5centerdot6centerdot5/2 = 75 baselines when analysing the 15 d long CONT11 campaign with the reduced 6 station network depicted in figure 2. However, since the GPS receiver at TSKB lost lock on the third day of CONT11 and the GPS receiver at HRAO had a similar problem on the 5th day, these two stations were excluded from the first and second 3 d batch solutions, respectively. Thus, the total number of baselines over which κ(τ) can be computed reduces to N = 65. Figure 4 shows how well the clock differences match those obtained from the single-technique GPS PPP solution. VCE helps to determine technique specific weights that integrate VLBI observations in a way which does not degrade the frequency transfer performance, mainly determined by GPS. In order to study this in more detail one needs to evaluate κ(τ) for the different processing options. Figure 6 depicts κ(τ) for solutions with different choices for the temporal resolution of the inter-technique cable delay model Δclk(t). Overall, it can be seen that the combination of VLBI with GPS tends to improve the average frequency transfer stability w.r.t. the GPS-only solution. However, as anticipated in the previous section, the choice of the temporal resolution of Δclk(t) is crucial. The use of an interval length of 1 h for the PLO of Δclk(t) absorbs almost all benefit gained from adding VLBI. On the other hand, it is clearly visible that daily estimates or parametrization as a constant lead to a degradation of the short term stability while improving the long-term stability more than any of the other choices for the temporal resolution of Δclk(t). In general, one can see that VLBI improves the frequency transfer stability for averaging periods between 3000 and 20 000 seconds as well as for periods close to one day. The latter improvement can be explained by the fact that VLBI helps to smooth the jumps introduced by day boundary discontinuities of the used IGS orbit and clock products. However, one needs to consider also the lower significance (higher uncertainty) of the MDEV at the far end of the long averaging period domain. The improvement between 3000 and 30 000 seconds is thought to have its origin in the parametrization of tropospheric estimates, which become more robust against data artifacts, when combining VLBI and GPS. In addition, a temporal resolution of 12 h or longer for Δclk(t) leads to an improvement for averaging periods of 12 h, which might relate to the orbital period of GPS satellites.
4.2. ผลจากการวิเคราะห์รวมกับ c5 ++ รวม VLBI และจีพีเอสในระดับการสังเกตเป็นวิธีการประมาณพารามิเตอร์ทั่วไปที่เว็บไซต์ geodetic สถานธรรมชาติมากที่สุด ด้วยวิธีนี้ ยอมและเทคนิคเฉพาะพิจารณาสามารถจะนำมาพิจารณาก่อนที่จะมีรวมการสังเกตโดยตรงในกระบวนการปรับปรุง สองยอมระหว่างเทคนิคดังกล่าวได้ที่เกี่ยวข้องสำหรับความผันผวนโทรโพสเฟียร์และนาฬิกา หนึ่งอดีตที่ส่วนใหญ่จะเกิดจากความสูงที่แตกต่างกันของจุดอ้างอิงตราสารร่วมอยู่ ซึ่งแปลระหว่างหยุดนิ่งที่สามารถถูกจำลอง หรือ ที่ทำการศึกษาปัจจุบัน ประเมินเป็นค่าคงตรงข้ามระหว่างการวิเคราะห์แต่ละชุด 72 h หลังออฟเซ็ต สามารถบุเป็น Δclk(t) โดยคาดว่าจะเกิดจากสายที่เกิดจากอุณหภูมิระหว่างรูป และทั้งความเป็นบัญชีตรงข้ามคงหรือ parametrized โดยแบบ PLO ความละเอียดเพียงพอชั่วคราวเพื่อติดตามการเปลี่ยนแปลงความล่าช้าของสาย เห็นได้ชัดว่า ทางเลือกของความล่าช้าระหว่างเทคนิคนี้สวัสดิการใด ๆ ที่อาจมีผลจากการประเมินของนาฬิกาทั่วไประหว่างเทคนิคทั้งสอง อาจดูดซับได้ วิธีแก้ปัญหาชั่วคราวระยะสั้นเกินไปของ Δclk(t) หมีความเสี่ยงที่เศษส่วนขนาดใหญ่ของข้อมูลเทคนิควิธีการที่สองไม่ถูกสะท้อนในนาฬิกาโดยประมาณ บนมืออื่น ๆ แสดงรุ่นไม่เพียงพอการเปลี่ยนแปลงความยาวของสายเคเบิลส่วนใหญ่ diurnal อาจเสื่อมโซลูชั่นรวมและพารามิเตอร์ได้รับนาฬิกา ดังนั้น การใช้ตัวเลือกต่าง ๆ สำหรับการแก้ปัญหาชั่วคราวของเทคนิคระหว่างสายระหว่างรุ่น Δclk(t) และได้รับการประเมินผลกระทบต่อความมั่นคงโอนย้ายความถี่4.3.ผลกระทบของทางเลือกสำหรับการแก้ปัญหาชั่วคราวรุ่นเลื่อนสายเทคนิคระหว่างเพื่อประเมินว่า VLBI และ GPS ที่นำไปสู่การปรับปรุงความถี่โอนเสถียรภาพ w.r.t. แก้ปัญหา GPS เดียว อัตราส่วนสมการ (3)is defined, where N is the number of baselines that are averaged. The ratio κ(τ) describes the average improvement/degradation when combining VLBI with GPS on the observation level for frequency transfer, compared to a GPS-only solution. Since the intervals for the PLO clock model were set to 5 min (see table 1) in both solutions one can compute κ(τ) in a straightforward way. Improvements in the overall frequency transfer performance will then be reflected as κ(τ) > 1, whereas degradations can be recognized when κ(τ) < 1. Since the data were processed in batches of 3 consecutive days one would expect to have N = 5centerdot6centerdot5/2 = 75 baselines when analysing the 15 d long CONT11 campaign with the reduced 6 station network depicted in figure 2. However, since the GPS receiver at TSKB lost lock on the third day of CONT11 and the GPS receiver at HRAO had a similar problem on the 5th day, these two stations were excluded from the first and second 3 d batch solutions, respectively. Thus, the total number of baselines over which κ(τ) can be computed reduces to N = 65. Figure 4 shows how well the clock differences match those obtained from the single-technique GPS PPP solution. VCE helps to determine technique specific weights that integrate VLBI observations in a way which does not degrade the frequency transfer performance, mainly determined by GPS. In order to study this in more detail one needs to evaluate κ(τ) for the different processing options. Figure 6 depicts κ(τ) for solutions with different choices for the temporal resolution of the inter-technique cable delay model Δclk(t). Overall, it can be seen that the combination of VLBI with GPS tends to improve the average frequency transfer stability w.r.t. the GPS-only solution. However, as anticipated in the previous section, the choice of the temporal resolution of Δclk(t) is crucial. The use of an interval length of 1 h for the PLO of Δclk(t) absorbs almost all benefit gained from adding VLBI. On the other hand, it is clearly visible that daily estimates or parametrization as a constant lead to a degradation of the short term stability while improving the long-term stability more than any of the other choices for the temporal resolution of Δclk(t). In general, one can see that VLBI improves the frequency transfer stability for averaging periods between 3000 and 20 000 seconds as well as for periods close to one day. The latter improvement can be explained by the fact that VLBI helps to smooth the jumps introduced by day boundary discontinuities of the used IGS orbit and clock products. However, one needs to consider also the lower significance (higher uncertainty) of the MDEV at the far end of the long averaging period domain. The improvement between 3000 and 30 000 seconds is thought to have its origin in the parametrization of tropospheric estimates, which become more robust against data artifacts, when combining VLBI and GPS. In addition, a temporal resolution of 12 h or longer for Δclk(t) leads to an improvement for averaging periods of 12 h, which might relate to the orbital period of GPS satellites.
การแปล กรุณารอสักครู่..