Since q0effective is reduced, the CL based on this q and the Cp at the crest, also based on qoeffective will increase, and Mcc and MDiv will be reduced. Furthermore, the sweep effect discussion so far has assumed that the thickness ratio is defined perpendicular to the quarter chord line. Usual industry practice is to define thickness ratio parallel to the freestream. This corresponds to sweeping the wing by shearing in planes parallel to the freestream rather than by rotating the wing about a pivot on the wing centerline. When the wing is swept with constant freestream thickness ratio, the thickness ratio perpendicular to the quarter chord line increases. The physical thickness is constant but the chord decreases. The result is a further decrease in sweep effectiveness below the pure cosine variation. Thus, there are several opposing effects, but the favorable one is dominant.
In addition to increasing Mcc, sweepback slightly increases the speed increment between the occurance of Mach 1.0 flow at the crest and the start of the abrupt increase in drag at MDiv. Using a definition for MDiv as the Mach number at which the slope of the CD vs. M0 curve is 0.05 (i.e. dCD/dM = 0.05), the following empirical expression closely approximates MDiv:
Since q0effective is reduced, the CL based on this q and the Cp at the crest, also based on qoeffective will increase, and Mcc and MDiv will be reduced. Furthermore, the sweep effect discussion so far has assumed that the thickness ratio is defined perpendicular to the quarter chord line. Usual industry practice is to define thickness ratio parallel to the freestream. This corresponds to sweeping the wing by shearing in planes parallel to the freestream rather than by rotating the wing about a pivot on the wing centerline. When the wing is swept with constant freestream thickness ratio, the thickness ratio perpendicular to the quarter chord line increases. The physical thickness is constant but the chord decreases. The result is a further decrease in sweep effectiveness below the pure cosine variation. Thus, there are several opposing effects, but the favorable one is dominant.
In addition to increasing Mcc, sweepback slightly increases the speed increment between the occurance of Mach 1.0 flow at the crest and the start of the abrupt increase in drag at MDiv. Using a definition for MDiv as the Mach number at which the slope of the CD vs. M0 curve is 0.05 (i.e. dCD/dM = 0.05), the following empirical expression closely approximates MDiv:
การแปล กรุณารอสักครู่..
