Human walking is accomplished with a strategy called the double pendulum. During forward motion, the leg that leaves the ground swings forward from the hip. This sweep is the first pendulum. Then the leg strikes the ground with the heel and rolls through to the toe in a motion described as an inverted pendulum. The motion of the two legs is coordinated so that one foot or the other is always in contact with the ground. The process of walking recovers approximately sixty per cent of the energy used due to pendulum dynamics and ground reaction force.
Walking differs from a running gait in a number of ways. The most obvious is that during walking one leg always stays on the ground while the other is swinging. In running there is typically a ballistic phase where the runner is airborne with both feet in the air (for bipedals).
Another difference concerns the movement of the center of mass of the body. In walking the body "vaults" over the leg on the ground, raising the center of mass to its highest point as the leg passes the vertical, and dropping it to the lowest as the legs are spread apart. Essentially kinetic energy of forward motion is constantly being traded for a rise in potential energy. This is reversed in running where the center of mass is at its lowest as the leg is vertical. This is because the impact of landing from the ballistic phase is absorbed by bending the leg and consequently storing energy in muscles and tendons. In running there is a conversion between kinetic, potential, and elastic energy.
There is an absolute limit on an individual's speed of walking (without special techniques such as those employed in speed walking) due to the upwards acceleration of the center of mass during a stride - if it's greater than the acceleration due to gravity the person will become airborne as they vault over the leg on the ground. Typically however, animals switch to a run at a lower speed than this due to energy efficiencies.
Human walking is accomplished with a strategy called the double pendulum. During forward motion, the leg that leaves the ground swings forward from the hip. This sweep is the first pendulum. Then the leg strikes the ground with the heel and rolls through to the toe in a motion described as an inverted pendulum. The motion of the two legs is coordinated so that one foot or the other is always in contact with the ground. The process of walking recovers approximately sixty per cent of the energy used due to pendulum dynamics and ground reaction force. Walking differs from a running gait in a number of ways. The most obvious is that during walking one leg always stays on the ground while the other is swinging. In running there is typically a ballistic phase where the runner is airborne with both feet in the air (for bipedals). Another difference concerns the movement of the center of mass of the body. In walking the body "vaults" over the leg on the ground, raising the center of mass to its highest point as the leg passes the vertical, and dropping it to the lowest as the legs are spread apart. Essentially kinetic energy of forward motion is constantly being traded for a rise in potential energy. This is reversed in running where the center of mass is at its lowest as the leg is vertical. This is because the impact of landing from the ballistic phase is absorbed by bending the leg and consequently storing energy in muscles and tendons. In running there is a conversion between kinetic, potential, and elastic energy. There is an absolute limit on an individual's speed of walking (without special techniques such as those employed in speed walking) due to the upwards acceleration of the center of mass during a stride - if it's greater than the acceleration due to gravity the person will become airborne as they vault over the leg on the ground. Typically however, animals switch to a run at a lower speed than this due to energy efficiencies.
การแปล กรุณารอสักครู่..