Radiation Therapy for Cancer
Resize font
Print
Email
Facebook
Twitter
Google+
Pinterest
ON THIS PAGE
What is radiation therapy?
How does radiation therapy kill cancer cells?
Does radiation therapy kill only cancer cells?
Why do patients receive radiation therapy?
How is radiation therapy planned for an individual patient?
How is radiation therapy given to patients?
Why are some types of radiation therapy given in many small doses?
When will a patient get radiation therapy?
Does radiation therapy make a patient radioactive?
What are the potential side effects of radiation therapy?
What research is being done to improve radiation therapy?
What is radiation therapy?
Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells (1). X-rays, gamma rays, and charged particles are types of radiation used for cancer treatment.
The radiation may be delivered by a machine outside the body (external-beam radiation therapy), or it may come from radioactive material placed in the body near cancer cells (internal radiation therapy, also called brachytherapy).
Systemic radiation therapy uses radioactive substances, such as radioactive iodine, that travel in the blood to kill cancer cells.
About half of all cancer patients receive some type of radiation therapy sometime during the course of their treatment.
How does radiation therapy kill cancer cells?
Radiation therapy kills cancer cells by damaging their DNA (the molecules inside cells that carry genetic information and pass it from one generation to the next) (1). Radiation therapy can either damage DNA directly or create charged particles (free radicals) within the cells that can in turn damage the DNA.
Cancer cells whose DNA is damaged beyond repair stop dividing or die. When the damaged cells die, they are broken down and eliminated by the body’s natural processes.
Does radiation therapy kill only cancer cells?
No, radiation therapy can also damage normal cells, leading to side effects.
Doctors take potential damage to normal cells into account when planning a course of radiation therapy. The amount of radiation that normal tissue can safely receive is known for all parts of the body. Doctors use this information to help them decide where to aim radiation during treatment.
Why do patients receive radiation therapy?
Radiation therapy is sometimes given with curative intent (that is, with the hope that the treatment will cure a cancer, either by eliminating a tumor, preventing cancer recurrence, or both) (1). In such cases, radiation therapy may be used alone or in combination with surgery, chemotherapy, or both.
Radiation therapy may also be given with palliative intent. Palliative treatments are not intended to cure. Instead, they relieve symptoms and reduce the suffering caused by cancer.
Some examples of palliative radiation therapy are:
Radiation given to the brain to shrink tumors formed from cancer cells that have spread to the brain from another part of the body (metastases).
Radiation given to shrink a tumor that is pressing on the spine or growing within a bone, which can cause pain.
Radiation given to shrink a tumor near the esophagus, which can interfere with a patient’s ability to eat and drink.
How is radiation therapy planned for an individual patient?
A radiation oncologist develops a patient’s treatment plan through a process called treatment planning, which begins with simulation.
During simulation, detailed imaging scans show the location of a patient’s tumor and the normal areas around it. These scans are usually computed tomography (CT) scans, but they can also include magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound scans.
Computed Tomography Scanner
Computed Tomography Scanner. CT scans are often used in treatment planning for radiation therapy. During CT scanning, pictures of the inside of the body are created by a computer linked to an x-ray machine.
CT scans are often used in treatment planning for radiation therapy. During CT scanning, pictures of the inside of the body are created by a computer linked to an x-ray machine.
During simulation and daily treatments, it is necessary to ensure that the patient will be in exactly the same position every day relative to the machine delivering the treatment or doing the imaging. Body molds, head masks, or other devices may be constructed for an individual patient to make it easier for a patient to stay still. Temporary skin marks and even tattoos are used to help with precise patient positioning.
Patients getting radiation to the head may need a mask. The mask helps keep the head from moving so that the patient is in the exact same position for each treatment.
After simulation, the radiation oncologist then determines the exact area that will be treated, the total radiation dose that will be delivered to the tumor, how much dose will be allowed for the normal tiss