The overall heat transfer coefficient is influenced by the thickness and thermal conductivity of the mediums through which heat is transferred. The larger the coefficient, the easier heat is transferred from its source to the product being heated. In a heat exchanger, the relationship between the overall heat transfer coefficient (U) and the heat transfer rate (Q) can be demonstrated by the following equation:
formula
where
Q = heat transfer rate, W=J/s [btu/hr]
A = heat transfer surface area, m2 [ft2]
U = overall heat transfer coefficient, W/(m2°C) [Btu/(hr-ft2°F)]
ΔTLM = logarithmic mean temperature difference, °C [°F]
From this equation we can see that the U value is directly proportional to Q, the heat transfer rate. Assuming the heat transfer surface and temperature difference remain unchanged, the greater the U value, the greater the heat transfer rate. In other words, this means that for a same kettle and product, a higher U value could lead to shorter batch times.
Several equations can be used to determine the U value, one of which is:
formula
where
h = convective heat transfer coefficient, W/(m2°C) [Btu/(hr-ft2°F)]
L = thickness of the wall, m [ft]
λ = thermal conductivity, W/(m°C) [Btu/(hr-ft°F)]