REFERENCES
[1] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and
threshold voltage temperature effects with applications in CMOS circuits,”
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7,
pp. 876–884, Jul. 2001.
[2] C. Park, J. P. John, K. Klein, J. Teplik, J. Caravella, J. Whitfield,
K. Papworth, and S. Cheng, “Reversal of temperature dependence of
integrated circuits operating at very low voltages,” in IEDM Tech. Dig.,
Dec. 1995, pp. 71–74.
[3] D. Wolpert and P. Ampadu, “Normal and reverse temperature dependence
in variation-tolerant nanoscale systems with high-k dielectrics and metal
gates,” in Proc. 3rd ACM Int. Conf. NANONET, Sep. 2008, pp. 1–5.
[4] R. Kumar and V. Kursun, “Reversed temperature-dependent propagation
delay characteristics in nanometer CMOS circuits,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 53, no. 10, pp. 1078–1082, Oct. 2006.
[5] A. Dasdan and I. Hom, “Handling inverted temperature dependence in static
timing analysis,” ACM Trans. Des. Autom. Electron. Syst. (TODAES),
vol. 11, no. 2, pp. 306–324, Apr. 2006.
[6] J. Tschanz, N. S. Kim, S. Dighe, J. Howard, G. Ruhl, S. Vanga,
S. Narendra, Y. Hoskote, H. Wilson, C. Lam, M. Shuman, C. Tokunaga,
D. Somasekhar, S. Tang, D. Finan, T. Karnik, N. Borkar, N. Kurd, and
V. De, “Adaptive frequency and biasing techniques for tolerance to dynamic
temperature-voltage variations and aging,” in Proc. IEEE ISSCC,
Feb. 2007, pp. 292–293.
[7] M. Elgebaly and M. Sachdev, “Variation-aware adaptive voltage scaling
system,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 5,
pp. 560–571, May 2007.
[8] P. Chen, C.-C. Chen, C.-C. Tsai, and W.-F. Lu, “A time-to-digitalconverter-based
CMOS smart temperature sensor,” IEEE J. Solid-State
Circuits, vol. 40, no. 8, pp. 1642–1648, Aug. 2005.
[9] Y.-W. Wang and K. S.-M. Li, “Temperature-aware dynamic frequency and
voltage scaling for reliability and yield enhancement,” in Proc. ASP-DAC,
Jan. 2009, pp. 49–54.
[10] C.-K. Kim, J.-G. Lee, Y.-H. Jun, C.-G. Lee, and B.-S. Kong, “CMOS
temperature sensor with ring oscillator for mobile DRAM self-refresh
control,” Microelectron. J., vol. 38, no. 10/11, pp. 1042–1049, Oct. 2007.
[11] P. Chen, M.-C. Shie, Z.-Y. Zheng, Z.-F. Zheng, and C.-Y. Chu, “A fully
digital time-domain smart temperature sensor realized with 140 FPGA
logic elements,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 12,
pp. 2661–2668, Dec. 2007.
[12] Y.-S. Lin, D. Sylvester, and D. Blaauw, “An ultra low power 1 V, 220
nW temperature sensor for passive wireless applications,” in Proc. IEEE
CICC, Sep. 2008, pp. 507–510.
[13] A. L. Aita, M. Pertijs, K. Makinwa, and J. H. Huijsing, “A CMOS smart
temperature sensor with a batch-calibrated inaccuracy of ±0.25 ◦C (3σ)
from −70 ◦C to 130 ◦C,” in Proc. IEEE Int. Solid-State Circuits Conf.,
Feb. 2009, pp. 342–343.
[14] H. Lakdawala, Y. W. Li, A. Raychowdhury, G. Taylor, and
K. Soumyanath, “A 1.05 V 1.6 mW, 0.45 ◦C 3σ resolution Δ
based temperature sensor with parasitic resistance compensation in 32 nm
digital CMOS process,” IEEE J. Solid-State Circuits, vol. 44, no. 12,
pp. 3621–3630, Dec. 2009.
[15] P. Ituero, J. L. Ayala, and M. Lopez-Vallejo, “A nanowatt smart temperature
sensor for dynamic thermal management,” IEEE Sensors J., vol. 8,
no. 12, pp. 2036–2043, Dec. 2008.
[16] D. Wolpert and P. Ampadu, “A sensor to detect normal or reverse temperature
dependence in nanoscale CMOS circuits,” in Proc. 24th IEEE Int.
Symp. Defect Fault Tolerance VLSI Syst. (DFT), Oct. 2009, pp. 193–201.
[17] D. Wolpert, B. Fu, and P. Ampadu, “Temperature-aware delay borrowing
for energy-efficient low-voltage link design,” in Proc. 4th ACM/IEEE Int.
Symp. NoCS, May 2010, pp. 107–114.
[18] H. Kawaguchi, G. Zhang, S. Lee, Y. Shin, and T. Sakurai, “A controller
LSI for realizing VDD-hopping scheme with off-the-shelf processors and
its application to MPEG4 system,” IEICE Trans. Electron., vol. E85-C,
no. 2, pp. 263–271, Feb. 2002.
[19] G. Ji, T. Arabi, and G. Taylor, “Design and validation of a power supply
noise reduction technique,” IEEE Trans. Adv. Packag., vol. 28, no. 3,
pp. 445–448, Aug. 2005.
[20] J. Rabaey, Low Power Design Essentials. New York: Springer-Verlag,
2009. DOI:10.1007/978-0-387-71713-5.